Skip to main content
Log in

Study of plasma membrane heterogeneity using a phosphatidylcholine derivative of 1,6-diphenyl-1,3,5-hexatriene [2-(3-(diphenylhexatriene)propanoyl)-3-palmitoyl-l-α-phosphatidylcholine]

  • Fluorescence of Membranes
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) and DPH derivatives have been used to characterize structural and physicochemical properties of specific membrane domains. Steady-state and fluorescence decay measurements of three probes, DPH (1,6-diphenyl-1,3,5-hexatriene), TMA-DPH [1-(4-trimethyl-ammonium-phenyl)-6-phenyl-1,3,5-hexatriene], and a phosphatidylcholine derivative of DPH, DPH-pPC [2-(3-(diphenylhexatriene)propanoyl)-3-pamitoyl-L-α-phosphatidyl choline], have been performed in erythrocyte membranes and in lymphocyte plasma membranes. The steady-state fluorescence polarization of the three probes showed a similar trend in both membranes. In fact either in erythrocyte or in lymphocyte plasma membranes the fluorescence polarization values of DPH-pPC and TMA-DPH were similar, but significantly higher with respect to DPH. A better characterization of erythrocyte and lymphocyte plasma membranes was possible by using fluorescence decay measurements. The data suggest the possible use of different DPH derivatives to characterize specific domains in biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Curatola and E. Bertoli (1987) in E. Bertoli, D. Chapman, A. Cambria, and U. Scapagnini (eds.),Biomembrane and Receptor Mechanisms, Liviana Press, Padova, Vol. 7, pp. 143–161.

    Google Scholar 

  2. M. Edidin (1990) in T. Claudio (ed),Current Topics in Membrane and Transport, Academic Press, New York, Vol. 36, pp. 81–95.

    Google Scholar 

  3. C. Zannoni, A. Arcioni, and P. Cavatorta (1983)Chem. Phys. Lipids 32, 179–250.

    Google Scholar 

  4. M. Straume and B. Litman (1987)Biochemistry 26, 5113–5120.

    PubMed  Google Scholar 

  5. M. Straume and B. Litman (1987)Biochemistry 26, 5121–5126.

    PubMed  Google Scholar 

  6. J. G. Kuhry, C. Duportail, G. Bronner, and G. Laustriat (1985)Biochim. Biophys. Acta 845, 60–67.

    PubMed  Google Scholar 

  7. A. Hermetter, E. Kalb, J. Lloidl and F. Paltauf (1988)Proc. SPIE 909, 155–162.

    Google Scholar 

  8. J. G. Molotkovsky, Y. M. Manevich, E. N. Gerasimova, I. M. Molotkoskaya, V. A. Polessky, and L. D. Bergelson (1982)Eur. J. Biochem. 122, 573–579.

    PubMed  Google Scholar 

  9. J. G. Molotkovsky, Y. M. Manevich, V. I. Babak, V. A. Polessky, and L. D. Bergelson (1984)Biochim. Biophys. Acta 778, 281–288.

    Google Scholar 

  10. J. Kuhry, G. Duportail, C. Bronner, and G. Laustriat (1985)Biochim. Biophys. Acta 845, 60–68.

    PubMed  Google Scholar 

  11. G. Ferretti, A. Tangorra and G. Curatola (1992)Biochem. Int. 26, 287–296.

    PubMed  Google Scholar 

  12. T. L. Steck and J. A. Kant (1974) in S. P. Colowick and N. O. Kaplan (eds.),Methods in Enzymology, Academic Press, New York, Vol. 31, pp. 172–173.

    Google Scholar 

  13. V. Kaever, M. Szamel, M. Goppelt, and E. Resch (1984)Biochim. Biophys. Acta 776, 133–143.

    PubMed  Google Scholar 

  14. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951)J. Biol. Chem. 193, 265–275.

    PubMed  Google Scholar 

  15. C. D. Stubbs, K. Kinosita, F. Munkonge, P. J. Quinn, and A. Ikegami (1984)Biochim. Biophys. Acta 775, 374–380.

    PubMed  Google Scholar 

  16. G. Ferretti, A. Tangorra, G. Zolese, and G. Curatola (1993)Membr. Biochem. 10, 17–27.

    PubMed  Google Scholar 

  17. M. Shinitzky and Y. Barenholz (1978)Biochim. Biophys. Acta 515, 367.

    PubMed  Google Scholar 

  18. R. M. Fiorini, M. Valentino, M. Glaser, E. Gratton, and G. Curatola (1988)Biochim. Biophys. Acta 939, 485–492.

    PubMed  Google Scholar 

  19. J. R. Alcalà, E. Gratton, and F. F. Prendergast (1987)Biophys J. 51, 587–596.

    PubMed  Google Scholar 

  20. R. A. Parente and B. R. Lentz (1985)Biochemistry 24, 6178–6185.

    PubMed  Google Scholar 

  21. K. H. Cheng (1989)Chem. Phys. Lipids 51, 137–145.

    PubMed  Google Scholar 

  22. T. Squier, J. E. Mahaney, J. J. Yin, C. S. Laiù, and J. R. Lacowicz (1991)Biophys. J. 59, 654–669.

    PubMed  Google Scholar 

  23. E. H. W. Pap, J. J. ter Horst, A. van Hoek, and A. J. W. G. Visser (1994)Biophys. Chem. 48, 337–351.

    PubMed  Google Scholar 

  24. B. R. Lentz (1989)Chem. Phys. Lipids 50, 171–190.

    Google Scholar 

  25. R. Fiorini, M. Valentino, S. Wang, M. Glaser, and E. Gratton (1987)Biochemistry 26, 3864–3870.

    PubMed  Google Scholar 

  26. G. Zolese, E. Gratton, and G. Curatola (1990)Chem. Phys. Lipids 55, 29–39.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangorra, A., Ferretti, G., Zolese, G. et al. Study of plasma membrane heterogeneity using a phosphatidylcholine derivative of 1,6-diphenyl-1,3,5-hexatriene [2-(3-(diphenylhexatriene)propanoyl)-3-palmitoyl-l-α-phosphatidylcholine]. J Fluoresc 4, 357–360 (1994). https://doi.org/10.1007/BF01881456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881456

Key Words

Navigation