Skip to main content
Log in

A mechanism of translocation based on high proton mobility and K+ counterflux at negatively charged surfaces in sieve elements

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Large pH gradients between the sources and the sinks involved in translocation of metabolites arise owing to photosynthesis and nitrate reduction in the leaves and respiration in the sinks. pH equalization between the sinks and the sources is proposed to be brought about by a rapid movement of H+ from sinks to sources along the negatively charged surfaces lining the translocation pathways and the ray symplast. This movement is made possible by a charge-compensating movement of K+ in the electrical double layer. In the sieve tubes and specially at the sieve plate pores the movement of K+ in the diffused layer is suggested as the driving force for translocation of metabolites. In the transport network of plants K+ moves in loops, acting like a conveyor belt in the phloem. The proposed mechanism explains all experimental observations related to translocation and also solves the problem of pH-stating in the source and sink cells. Its implications for shoot-root cooperation have been also indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin, M. 1982.J. Biol. Phys. 10, 103–109.

    Google Scholar 

  • Amir, S. 1971.Physiol. Plantarum 24, 226–231.

    Google Scholar 

  • Bockris, J. O. M.; Reddy, A. K. N. 1973.Modern Electrochemistry, Plenum Press, New York.

    Google Scholar 

  • Bowling, D. J. F. 1968.Planta 80, 21–26.

    Google Scholar 

  • Canny, M. J. 1973.Phloem Translocation, Cambridge Univ. Press, London.

    Google Scholar 

  • Escrich, W. 1975.Encyc. Plant Physiol. 1, 245–255.

    Google Scholar 

  • Fensom, D. S. 1975.Encyc. Plant Physiol. 1, 223–244.

    Google Scholar 

  • Franks, F. (Ed) 1972.WATER: A COMPREHENSIVE TREATIZE, Vol. 1. Plenum Press, New York.

    Google Scholar 

  • Fujiwara, A., Suzuki, M. 1961.Tohoku J. Agr. Res. 12, 363–367.

    Google Scholar 

  • Geiger, D. R., Sovonick, S. A. 1975.Encyc. Plant Physiol. 1, 256–288.

    Google Scholar 

  • Giaquinta, R. 1980.Ber. Dtsch. Bot. Ges. 93 187–201.

    Google Scholar 

  • Hartt, C. E. 1969.Plant Physiol 44, 1461–1469.

    Google Scholar 

  • Holl, W. 1975.Encyc. Plant Physiol. 1, 432–450.

    Google Scholar 

  • Joos, G. 1959.LEHRBUCH DER THEORETISCHEN PHYSIK. Akademische Verlagsgesellschaft, Frankfurt am Main.

    Google Scholar 

  • Katchalsky, A.; Curran, P. F., 1967.NONEQUILIBRIUM THERMODYNAMICS IN BIOPHYSICS, Harvard University Press, Cambridge.

    Google Scholar 

  • Klotz, I. M. 1962.HORIZONS IN BIOCHEMISTRY, Academic Press, New York.

    Google Scholar 

  • Läuchli, A. 1976.Encyc. Plant Physiol. 2B, 372–393.

    Google Scholar 

  • Lee, D. R. 1972. Ph. D. Thesis, Dept. of Botany, Univ. of Aberdeen.

  • MacRobbie, E. A. C. 1971.Biol. Rev. 46, 429–481.

    Google Scholar 

  • Matijević, E. (Ed.) 1974.SURFACE AND COLLOID SCIENCE, Vol. 7, John Wiley & Sons, New York.

    Google Scholar 

  • Milburn, J. A. 1975.Encyc. Plant Physiol. 1, 328–353.

    Google Scholar 

  • Mitchell, P. 1979.Science 206, 1148–1159.

    Google Scholar 

  • Parthasarathy, M. V. 1975.Encyc. Plant Physiol. 1, 3–38.

    Google Scholar 

  • Pate, J. S. 1975.Encyc. Plant Physiol. 1, 451–473.

    Google Scholar 

  • Pate, J. S.; Gunning, B. E. S. 1972,Ann. Rev. Plant Physiol. 23, 173–196.

    Google Scholar 

  • Peel, A. J.; Field, R. J.; Coulson, C. L.; Gardner, D. C. J. 1969.Physiol. Plantarum 22, 768–775.

    Google Scholar 

  • Sheldrake, A. R.; Northcote, D. H. 1968.J. Exp. Bot. 19, 681–689.

    Google Scholar 

  • Smith, F. A.; Raven, J. A. 1976.Encyc. Plant Physiol. 2, 317–346.

    Google Scholar 

  • Spanner, D. C. 1975.Encyc. Plant Physiol. 1, 301–327.

    Google Scholar 

  • Tait, M. J.; Franks, F. 1971.Nature 230, 91–94.

    Google Scholar 

  • Wardlaw, I. F. 1968.Biol. Rev. 34, 79–105.

    Google Scholar 

  • Wardlaw, I. F. 1974.Ann. Rev. Plant Physiol. 25, 515–539.

    Google Scholar 

  • Ziegler, H. 1975.Encyc. Plant Physiol. 1, 59–100.

    Google Scholar 

  • Zimmermann, M. H.; Milburn, J. A. (Eds.)Encyc. Plant Physiol. 1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, M. A mechanism of translocation based on high proton mobility and K+ counterflux at negatively charged surfaces in sieve elements. J Biol Phys 11, 111–116 (1983). https://doi.org/10.1007/BF01881329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881329

Keywords

Navigation