Skip to main content

Characteristics of Symplasmic Transport

  • Chapter
  • First Online:
Symplasmic Transport in Vascular Plants

Abstract

Symplasmic transport is possible in organisms of plants, fungi, and even in animals and some prokaryotes, where cell-to-cell protoplasmic junctions are present. However, a spectacular evolution of the symplasm was limited to plants, where highly efficient long-distance transport occurring inside the cells is responsible for the spread of molecules of different nature along the plant body of length up to tens of meters. Several aspects of symplasmic transport are considered in this chapter. A short review of the history of this research is presented with particular attention to old but still inspiring ideas and unanswered questions. Ultrastructure, phylogeny, and ontogeny of the symplasm as well as different mechanisms that allow symplasmic transport (diffusion, cytoplasmic streaming, and mass flow) are discussed thoroughly. Examples of tissues where symplasmic transport covers the distance of several or even more cells without participation of sieve tubes are also discussed, besides the strictly local cell-to-cell symplasmic transport and long-distance transport in phloem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BS:

Bundle sheath

EBS:

Extended bundle sheath

KMS:

Kranz mesophyll

PCA:

Primary carbon assimilation

PCR:

Primary carbon reduction

PD:

Plasmodesma/plasmodesmata

PVM:

Paraveinal mesophyll

SEL:

Size exclusion limit

VP:

Vascular parenchyma

References

  • Ackers D, Hejnowicz Z, Sievers A. Variation in velocity of cytoplasmic streaming and gravity effect in characean internodal cells measured by laser-Doppler-velocitometry. Protoplasma. 1994;179:61–71.

    PubMed  CAS  Google Scholar 

  • Adler LS. The ecological significance of toxic nectar. Oikos. 2000;91:409–20.

    Google Scholar 

  • Anisimov AV, Egorov AG. Plasmodesmata as a modulator of osmotic water fluxes in plants. Russ J Plant Physiol. 2002;49:758–66.

    Google Scholar 

  • Antosiewicz DM, Sirko A, Sowiński P. Trace elements transport in plants. In: Prasad MNV, editor. Trace elements: nutritional benefits, environmental contamination, and health implications. New Jersey: John Wiley; 2008. p. 413–48.

    Google Scholar 

  • Aoki K, Suzui N, Fujimaki S, Dohmae N, Yonekura-Sakakibara K, Fujiwara T, et al. Destination-selective long-distance movement of phloem proteins. Plant Cell. 2005;17:1801–14.

    PubMed  CAS  Google Scholar 

  • Atkins CA. Spontaneous phloem exudation accompanying abscission in Lupinus mutabilis Lupinus mutabilis (Sweet). J Exp Bot. 1999;50:805–12.

    CAS  Google Scholar 

  • Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant. 2011;4:377–94.

    PubMed  CAS  Google Scholar 

  • Baker DA. Long-distance vascular transport of endogenous hormones in plants and their role in source: sink regulation. Israel J Plant Sci. 2000a;48:199–203.

    CAS  Google Scholar 

  • Baker DA. Vascular transport of auxins and cytokinins in Ricinus. Plant Growth Reg. 2000b;32:157–60.

    CAS  Google Scholar 

  • Baluška F, Hlavacka A, Volkmann D, Menzel D. Getting connected: actin based cell-to-cell channels in plants and animals. Trends Cell Biol. 2004;14:404–8.

    PubMed  Google Scholar 

  • Barton DA, Cole L, Collings DA, Liu DYT, Smith PMC, Day DA, et al. Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J. 2011;66:806–17.

    PubMed  CAS  Google Scholar 

  • Beck CB. An introduction to plant structure and development: plant anatomy for the twenty-first century. 2nd ed. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  • Behnke H-D. Distribution and evolution of forms and types of sieve-element plastids in the dicotyledones. Aliso. 1991;13:167–82.

    Google Scholar 

  • Benitez-Alfonso Y, Jackson D, Maule A. Redox regulation of intercellular transport. Protoplasma. 2011;248:131–40.

    PubMed  CAS  Google Scholar 

  • Bilska A, Sowiński P. Closure of plasmodesmata in maize (Zea mays L.) at low temperature: a new mechanism for inhibition of photosynthesis. Ann Bot. 106:675–86.

    Google Scholar 

  • Black MZ, Minchin PE, Gould N, Patterson KJ, Clearwater MJ. Measurement of Bremsstrahlung radiation for in vivo monitoring of 14C tracer distribution between fruit and roots of kiwifruit (Actinidia arguta) cuttings. Planta. 2012;236:1327–37.

    PubMed  CAS  Google Scholar 

  • Botha CEJ. Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta. 1992;187:348–58.

    CAS  Google Scholar 

  • Botha CEJ. Comparative structures of specialised monocotyledonous leaf blade plasmodesmata. In: Oparka KJ, editor. Plasmodesmata. Oxford: Blackwell; 2005. p. 73–87.

    Google Scholar 

  • Botha CEJ, van Bel AJE. Quantification of symplasmic continuity as visualised by plasmodesmograms: diagnostic value for phloem-loading pathways. Planta. 1992;187:359–66.

    Google Scholar 

  • Botha CEJ, Hartley BJ, Cross RHM. The ultrastructure and computer – enhanced digital image analysis of plasmodesmata at the Kranz mesophyll – bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally – fixed leaf blades. Ann Bot. 1993;72:255–61.

    Google Scholar 

  • Botha CEJ, Cross RHM, van Bel AJE, Peter CI. Phloem loading in the sucrose-export-defective (SXD1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface. Protoplasma. 2000;214:65–72.

    CAS  Google Scholar 

  • Bromilow RH, Chamberlain K. The herbicide glyphosate and related molecules: physicochemical and structural factors determining their mobility in phloem. Pest Manag Sci. 2000;56:368–73.

    CAS  Google Scholar 

  • Brown PH, Hu H. Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot. 1996;77:497–505.

    CAS  Google Scholar 

  • Brubaker CL, Lersten NR. Paraveinal mesophyll: review and survey of the subtribe Erythrininae (Phaseoleae, Papilionoideae, Leguminosae). Pl Syst Evol. 1995;196:31–62.

    Google Scholar 

  • Brudenell AJP, Baker DA, Grayson BT. Phloem mobility of xenobiotics: tabular review of physicochemical properties governing the output of the Kleir model. Plant Growth Regul. 1995;16:215–31.

    CAS  Google Scholar 

  • Brudenell AJP, Griffiths H, Rossiter JT, Baker DA. The phloem mobility of glucosinolates. J Exp Bot. 1999;50:745–56.

    CAS  Google Scholar 

  • Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC. Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma. 2011;248:61–74.

    PubMed  CAS  Google Scholar 

  • Canny M. Protoplasmic streaming. In: Zimmermann MH, Milburn JA, editors. Transport in the phloem. Encyclopedia of Plant Physiology (N.S.). Heidelberg: Springer-Verlag; 1975. p. 289–300

    Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB. Cell-to-cell communication via plant endomembranes. Cell Biol Int. 1999;23:653–61.

    PubMed  CAS  Google Scholar 

  • Chen X-Y, Kim J-Y. Transport of macromolecules through plasmodesmata and the phloem. Physiol Plant. 2006;126:560–71.

    CAS  Google Scholar 

  • Chen S, Petersen BL, Olsen CE, Schulz A, Halkier BA. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol. 2001;127:194–201.

    PubMed  CAS  Google Scholar 

  • Christensen NM, Faulkner C, Oparka K. Evidence for unidirectional flow through plasmodesmata. Plant Physiol. 2009;150:96–104.

    PubMed  CAS  Google Scholar 

  • Cittadino E. Nature as the laboratory. Darwinian plant ecology in the German empire 1880–1900. Cambridge: Cambridge University Press; 1990.

    Google Scholar 

  • Cook ME, Graham LE. Evolution of plasmodesmata. In: van Bel AJE, van Kesteren WJP, editors. Plasmodesmata: structure, function, role in cell communication. Berlin: Springer-Verlag; 1999. p. 102–15.

    Google Scholar 

  • Cook ME, Graham LE, Botha CEJ, Lavin CA. Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. Am J Bot. 1997;84:1169–78.

    PubMed  CAS  Google Scholar 

  • Cooke TJ, Tilney MS, Tilney LG. Plasmodesmatal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. In: Smallwood M, Knox JP, Bowles DJ, editors. Membranes: specialized functions in plants. Oxford: BIOS Scientific; 2000. p. 471–88.

    Google Scholar 

  • Crawford KM, Zambryski PC. Plasmodesmata signaling: many roles, sophisticated statutes. Curr Opin Plant Biol. 1999;2:382–7.

    PubMed  CAS  Google Scholar 

  • Cui ST. Molecular self-diffusion in nanoscale cylindrical pores and classical Fick’s law predictions. J Chem Phys. 2005;123:054706.

    PubMed  CAS  Google Scholar 

  • Davidson A, Keller F, Turgeon R. Phloem loading, plant growth form, and climate. Protoplasma. 2011;248:153–63.

    PubMed  CAS  Google Scholar 

  • Delétage-Grandon C, Chollet J-F, Faucher M, Rocher F, Komor E, Bonnemain J-L. Carrier-mediated uptake and phloem systemy of a 350-Dalton chlorinated xenobiotic with α-amino acid function. Plant Physiol. 2001;125:1620–32.

    PubMed  Google Scholar 

  • Dengler NG, Taylor WC. Developmental aspects of C4 photosynthesis. In: Leegood RC, Sharkey TD, von Caemmerer S, editors. Photosynthesis: physiology and metabolism. Dordrecht: Kluwer Academic; 2000. p. 471–95.

    Google Scholar 

  • Ding B. Intercellular protein trafficking through plasmodesmata. Plant Mol Biol. 1998;38:279–310.

    PubMed  CAS  Google Scholar 

  • Dixon HH. Transpiration and the ascent of sap in plants. London: Macmillan; 1914.

    Google Scholar 

  • Dixon HH, Ball NG. Transport of organic substances in plants. Nature. 1922;109:236–7.

    Google Scholar 

  • Dong W, Li W, Guo G-Q, Zheng G-C. Ultrastructural aspects of plasmodesmata and cytoplasmic bridges during spermatogenesis in Funaria hygrometrica. Acta Bot Sin. 2004;46:988–96.

    Google Scholar 

  • Drake G, Carr DJ. Plasmodesmata, tropisms, and auxin transport. J Exp Bot. 1978;29:1309–18.

    CAS  Google Scholar 

  • Eastman PAK, Dengler NG, Peterson CA. Suberized bundle sheaths in grasses (Poaceae) of different photosynthetic types. I. Anatomy, ultrastructure and histochemistry. Protoplasma. 1988a;142:92–111.

    CAS  Google Scholar 

  • Eastman PAK, Peterson CA, Dengler NG. Suberized bundle sheaths in grasses (Poaceae) of different photosynthetic types. II. Apoplastic permeability. Protoplasma. 1988b;142:112–6.

    Google Scholar 

  • Echeverria E. Vesicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiol. 2000;123:1217–26.

    PubMed  CAS  Google Scholar 

  • Ehlers K, Kollmann R. Primary and secondary plasmodesmata: structure, origin, and function. Protoplasma. 2001;216:1–30.

    PubMed  CAS  Google Scholar 

  • Ehlers K, Knoblauch M, van Bel AJE. Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the transport conduits free for mass flow. Protoplasma. 2000;214:80–92.

    Google Scholar 

  • Enquist BJ. Cope’s rule and the evolution of long-distance transport in vascular plants: allometric scaling, biomass partitioning and optimization. Plant Cell Environ. 2003;26:151–61.

    Google Scholar 

  • Erwee MG, Goodwin PB. Characterization of the Egeria densa leaf symplast: response to plasmolysis, deplasmolysis and aromatic acids. Protoplasma. 1984;122:162–8.

    CAS  Google Scholar 

  • Esau K. An anatomist’s view of virus diseases. Am J Bot. 1956;43:739–48.

    Google Scholar 

  • Esau K. The sieve element and its immediate environment: thoughts on research of the past fifty years. J Indian Bot Soc. 1971;50:115–29.

    Google Scholar 

  • Evans LT. Transport and distribution in plants. In: Wardlaw IF, Passioura JB, editors. Transport and transfer processes in plants. New York: Academic; 1976. p. 1–14

    Google Scholar 

  • Evert RF, Eichhorn SE. Sieve-element ultrastructure in Platycerium bifurcatum and some other polypodiaceous ferns: the nacreous wall thickening and maturation of the protoplast. Am J Bot. 1976;63:30–48.

    Google Scholar 

  • Evert RF, Eschrich W, Heyser W. Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L. Planta. 1977;136:77–89.

    Google Scholar 

  • Evert RF, Eschrich W, Heyser W. Leaf structure in relation to solute transport and phloem loading in Zea mays L. Planta. 1978;138:279–94.

    Google Scholar 

  • Evert RF, Warmbrodt RD, Eichhorn SE. Sieve-pore development in some Leptosporangiate ferns. Am J Bot. 1989;76:1404–13.

    Google Scholar 

  • Evert RF, Russin WA, Bosabalidis AM. Anatomical and ultrastructural change associated with sink-to-source transition in developing maize leaves. Int J Plant Sci. 1996;157:247–61.

    Google Scholar 

  • Fensom DS, Williams EJ, Aikman D, Dale JE, Scobie J, Ledingham KWO, et al. Translocation of 11C from leaves of Helianthus: preliminary results. Can J Bot. 1977;55:1787–93.

    CAS  Google Scholar 

  • Fischer DB. An unusual layer of cells in the mesophyll of the soybean leaf. Bot Gaz. 1967;128:215–8.

    Google Scholar 

  • Fisher DB. Kinetics of C-14 translocation in soybean. II. Kinetics in the leaf. Plant Physiol. 1970;45:114–8.

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Giaquinta RT. The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. I. Ultrastructure and biochemistry during vegetative development. Planta. 1983a;157:411–21.

    Google Scholar 

  • Franceschi VR, Giaquinta RT. Specialized cellular arrangements in legume leaves in relation to assimilate transport and compartmentation: comparison of the paraveinal mesophyll. Planta. 1983b;159:415–22.

    Google Scholar 

  • Franceschi VR, Wittenbach VA, Giaquinta RT. Paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. Plant Physiol. 1983;72:586–9.

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Ding B, Lucas WJ. Mechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plants. Planta. 1994;192:347–58.

    Google Scholar 

  • Fritz E, Evert RF, Heyser W. Microautoradiographic studies of phloem loading and transport in the leaf of Zea mays L. Planta. 1983;159:193–206.

    Google Scholar 

  • Furbank RT, Foyer CH. C4 plants as valuable model experimental systems for the study of photosynthesis. New Phytol. 1988;109:265–77.

    CAS  Google Scholar 

  • Fushimi K, Verkman AS. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol. 1991;112:719–25.

    PubMed  CAS  Google Scholar 

  • Gaffal KP, Friedrichs GJ, El-Gammal S. Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann Bot. 2007;99:593–607.

    PubMed  Google Scholar 

  • Gamalei YV. Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees-Struct Funct. 1989;3:96–110.

    Google Scholar 

  • Gamalei YV. The role of mesophyll tonoplast in determining the route of phloem loading. Thirty years of studies on phloem loading. Russ J Plant Physiol. 2007;54:1–9.

    CAS  Google Scholar 

  • Gamalei YV, Pakhomova MV. Electron-microscopic evidence of the vacuolar nature of phloem exudate. Russ J Plant Physiol. 2002;49:181–93.

    Google Scholar 

  • Gerdes H-H, Bukoreshtliev NV, Barroso JFV. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett. 2007;581:2194–301.

    PubMed  CAS  Google Scholar 

  • Glockmann C, Kollmann R. Structure and development of cell connections in the phloem of Metasequoia glyptostroboides needles. 1. Ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma. 1996;193:191–203.

    Google Scholar 

  • Grange RI, Peel AJ. Evidence for solution flow in the phloem of willow. Planta. 1978;138:15–23.

    CAS  Google Scholar 

  • Griffiths H, Weller G, Toy LFM, Dennis RJ. You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ. 2013;36:249–61.

    PubMed  CAS  Google Scholar 

  • Gunning BES, Overall RL. Plasmodesmata and cell to cell transport in plants. BioSci. 1983;33:260–5.

    CAS  Google Scholar 

  • Halarewicz A, Gabryś B. Did the evolutionary transition of aphids from angiosperm to non-spermatophyte vascular plants have any effect on probing behaviour? Bull Insectol. 2012;65:77–80.

    Google Scholar 

  • Hattersley PW. Variations in photosynthetic pathway. In: Soderstrom TM, Hilu KW, Campell CS, Barkworth ME, editors. Grass systematics and evolution. Washington: Smithsonian Institution Press; 1987. p. 49–64.

    Google Scholar 

  • Hattersley PW, Browning AJ. Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types in parenchymatous bundle sheaths and PCR (“Kranz”) sheaths. Protoplasma. 1981;109:371–401.

    Google Scholar 

  • Haupt S, Duncan GH, Holzberg S, Oparka KJ. Evidence for symplastic phloem loading in sink leaves of barley. Plant Physiol. 2001;125:209–18.

    PubMed  CAS  Google Scholar 

  • Hejnowicz Z. Propagated disturbances of transverse potential gradient in intracellular fibrils as the source of motive force for longitudinal transport in cells. Protoplasma. 1970;71:343–64.

    Google Scholar 

  • Henton SM, Greaves AJ, Piller GJ, Minchin PEH. Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube. J Exp Bot. 2002;53:1411–9.

    PubMed  CAS  Google Scholar 

  • Hoad GV, Retamales JA, Whiteside RJ, Lewis M. Phloem translocation of gibberellins in three species of higher plants. Plant Growth Regul. 1993;13:85–8.

    CAS  Google Scholar 

  • Hofius D, Hajirezaei M-R, Geiger M, Tschiersch H, Melzer M, Sonnewald U. RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol. 2004;135:1256–68.

    PubMed  CAS  Google Scholar 

  • Jahnke S, Schlesinger U, Feige GB, Knust EJ. Transport of photoassimilates in young trees of Fraxinus and Sorbus: measurement of translocation in vivo. Bot Acta. 1998;111:307–15.

    CAS  Google Scholar 

  • Jedd G, Chua N-M. Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol. 2002; 43:384–92.

    PubMed  CAS  Google Scholar 

  • Kamiya N. Protoplasmic streaming. Protoplasmotologia Bd 8 3A. Wien: Springer-Verlag; 1959.

    Google Scholar 

  • Kamiya N. Physical and chemical basis of cytoplasmic streaming. Annu Rev Plant Physiol. 1981;32:205-36.

    CAS  Google Scholar 

  • Kamiya N, Kuroda K. Velocity distribution of the protoplasmic streaming in Nitella cells. Bot Mag Tokyo. 1956;89:544–654.

    Google Scholar 

  • Kevekordes KG, McCully ME, Canny MJ. The occurrence of an extended bundle sheath system (paraveinal mesophyll) in the legumes. Can J Bot. 1988;66:94–100.

    Google Scholar 

  • Kirk BT, Sinclair JB. Plasmodesmata between hyphal cells of Geotrichum candidum. Science. 1966;153:1646.

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Yamashita R, Miura H, Watanabe M. Phloem transport of tropane and pyridine alkaloids in Duboisia myoporoides. J Plant Physiol. 1993;142:635–7.

    CAS  Google Scholar 

  • Klauer SF, Franceschi VR. Mechanism of transport of vegetative storage proteins to the vacuole of the paraveinal mesophyll of soybean leaf. Protoplasma. 1997;200:174–85.

    CAS  Google Scholar 

  • Klauer SF, Franceschi VR, Ku MSB. Protein compositions of mesophyll and paraveinal mesophyll of soybean leaves at various developmental stages. Plant Physiol. 1991;97:1306–16.

    PubMed  CAS  Google Scholar 

  • Knoblauch M, van Bel AJE. Sieve tubes in action. Plant Cell. 1998;10:35–50.

    CAS  Google Scholar 

  • Köhler P, Carr DJ. Eduard Tangl (1848–1905) – discoverer of plasmodesmata. Huntia. 2006a; 12:169–72.

    Google Scholar 

  • Köhler P, Carr DJ. A somewhat obscure discoverer of plasmodesmata: Eduard Tangl (1848–1905). In: Kokowski M, editor. The global and the local: the history of science and the cultural integration of Europe. Proceedings of the 2nd ICESHS; 2006 Sep 6–9; Cracow, Poland. 2006b. p. 208–211.

    Google Scholar 

  • Kramer EM, Frazer NL, Baskin TI. Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana. J Exp Bot. 2007;58:3005–15.

    PubMed  CAS  Google Scholar 

  • Kursanov AL. Assimilate transport in plants. Amsterdam: Elsevier; 1984.

    Google Scholar 

  • Kwiatkowska M. Plasmodesmata coupling and cell differentiation in algae. In: van Bel AJE, Van Kesteren WJP, editors. Plasmodesmata. Structure, function, role in cell communication. Berlin: Springer-Verlag; 1999. p. 205–224.

    Google Scholar 

  • Kwiatkowska M. Plasmodesmal changes are related to different developmental stages of antheridia of Chara species. Protoplasma. 2003;222:1–11.

    PubMed  CAS  Google Scholar 

  • Lang A. A relay mechanism for phloem translocation. Ann Bot. 1979;44:141–5.

    Google Scholar 

  • Lang A. Turgor-regulated translocation. Plant Cell Environ. 1983;6:683–9.

    Google Scholar 

  • Langdale JA. C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell. 2011;23:3879–92.

    PubMed  CAS  Google Scholar 

  • Lansing AJ, Franceschi VR. The paraveinal mesophyll: a specialized path for intermediary transfer of assimilates in legume leaves. Aust J Plant Physiol. 2000;27:757–67.

    CAS  Google Scholar 

  • Lazzaro MD, Thomson WW. The vacuolar-tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip. Protoplasma. 1996;193:181–90.

    Google Scholar 

  • Leegood RC. Transport during C4 photosynthesis. In: Leegood RC, Sharkey TD, von Caemmerer S, editors. Photosynthesis, physiology and metabolism. Dordrecht: Kluwer Academic; 2000. p. 459–661.

    Google Scholar 

  • Leegood RC. Roles of the bundle sheath cells in leaves of C3 plants. J Exp Bot. 2008;59:1663–73.

    PubMed  CAS  Google Scholar 

  • Liljebjelke KA, Franceschi VR. Differentiation of mesophyll and paraveinal mesophyll in soybean leaf. Bot Gaz. 1991;152:34–41.

    Google Scholar 

  • Liu Y-C, Wang Q, Lu L-H. Density inhomogeneity and diffusion behavior of fluids in micropores by molecular-dynamics simulation. J Chem Phys. 2004;120:10728–35.

    Google Scholar 

  • Luby-Phelps K, Mujumdar S, Mujumdar RB, Ernst LA, Galbraith W, Waggoner AS. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys J. 1993;65:236–42.

    PubMed  CAS  Google Scholar 

  • Lucas WJ. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology. 2006;344:169–84.

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham B-K, Kim J-Y. Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol. 2009;19:495–503.

    PubMed  CAS  Google Scholar 

  • Maeda H, Song W, Sage TL, DellaPenna D. Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell. 2006;18:2710–32.

    PubMed  CAS  Google Scholar 

  • Magnuson CE, Fares Y, Goeschl JD, Nelson CE, Strain BR, Jaeger CH, et al. An integrated tracer kinetics system for studying carbon uptake and allocation in plants using continuously produced 11CO2. Radiat Environ Biophys. 1982;21:51–65.

    CAS  Google Scholar 

  • Malek K, Coppens M-O. Knudsen self- and Fickian diffusion in rough nanoporous media. J Chem Phys. 2003;119:2801–11.

    CAS  Google Scholar 

  • Marchant HJ. Plasmodesmata in algae and fungi. In: Gunning BES, Robards AW, editors. Intercellular communication in plants: studies on plasmodesmata. Heidelberg: Springer-Verlag; 1976. p. 3–80.

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot. 1996;47:1255–63.

    PubMed  CAS  Google Scholar 

  • Matsiliza A, Botha CEJ. Aphid (Sitobion yakini) investigation suggests thin-walled sieve tubes in barley (Hordeum vulgare) to be more functional than thick-walled sieve tubes. Physiol Plant. 2002;115:137–43.

    PubMed  CAS  Google Scholar 

  • Maule AJ, Benitez-Alfonso Y, Faulkner CF. Plasmodesmata – membrane tunnels with attitude. Curr Opin Plant Biol. 2011;14:683–90.

    PubMed  CAS  Google Scholar 

  • Mayrovitz HN, Larnard D, Duda G. Blood velocity measurement in human conjunctival vessels. Cardiovasc Dis. 1981;8:509–26.

    PubMed  Google Scholar 

  • Meeuse ADJ. Plasmodesmata. Bot Rev. 1941;7:249–62.

    Google Scholar 

  • Minchin PEH, Thorpe MR. Measurement of unloading and reloading of photo-assimilate within the stem of bean. J Exp Bot. 1987;38:211–20.

    Google Scholar 

  • Minchin PEH, Ryan KG, Thorpe MR. Further evidence of apoplastic unloading into the stem of bean: identification of the phloem buffering pool. J Exp Bot. 1984;35:1744–53.

    Google Scholar 

  • Mittler TE. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmehn) (Homoptera, Aphididae). I. The uptake of phloem sap. J Exp Biol. 1957;34:334–41.

    Google Scholar 

  • Moran NA. The coevolution of bacterial endosymbionts and phloem-feeding insects. Annu Missouri Bot Gard. 2001;88:35–44.

    Google Scholar 

  • Morris DA, Larcombe NJ. Phloem transport and conjugation of foliar-applied 1-aminocyclopropane-1-carboxylic acid in cotton (Gossypium hirsutum L.). J Plant Physiol. 1995;146:429–36.

    CAS  Google Scholar 

  • Mueller DMJ. Observations on the ultrastructure of Buxbaumia protonema. Plasmodesmata in the cross walls. Bryologist. 1972;75:63–8.

    Google Scholar 

  • Müller WH, Humbel BM, Van Aelst AC, Van der Krift TP, Boekhout T. The perforate septal pore cap of Basidiomycetes. In: van Bel AJE, Van Kesteren WJP, editors. Plasmodesmata. Structure, function, role in cell communication. Berlin: Springer-Verlag; 1999. p. 120–9.

    Google Scholar 

  • Münch E. Die Stoffbewegungen in der Pflanze. Jena: Gustav Fischer; 1930.

    Google Scholar 

  • Naidoo Y, Heneidak S, Kasim N, Baijnath H. Morphology, developmental ultrastructure and ultracytochemistry of staminal hairs in Bulbine inflata (Asphodelaceae) in relation to function. Flora. 2011;206:1069–75.

    Google Scholar 

  • Nicholson BJ. Gap junctions – from cell to molecule. J Cell Sci. 2003;116:4479–81.

    PubMed  CAS  Google Scholar 

  • Olesen P. The neck constriction in plasmodesmata. Planta. 1979;144:349–58.

    Google Scholar 

  • Overall RL, Blackman LM. A model of the macromolecular structure of plasmodesmata. Trends Plant Sci. 1996;1:307–11.

    Google Scholar 

  • Palukaitis P. Potato spindle tuber viroid: investigation of the long distance, intra-plant transport route. Virology. 1987;158:239–41.

    PubMed  CAS  Google Scholar 

  • Pardos JA. Ecophysiology, a meeting point between function and management of forest ecosystems. Invest Agrar: Sist Recur For. 2005;14:277–91.

    Google Scholar 

  • Patrick JW. Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:191–222.

    CAS  Google Scholar 

  • Patrick JW, Offler CE. Post-sieve element transport of photoassimilates in sink regions. J Exp Bot. 1996;47:1165–77.

    PubMed  CAS  Google Scholar 

  • Pearcy RW, Ehleringer J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 1984;7:1–13.

    CAS  Google Scholar 

  • Pickard WF. The role of cytoplasmic streaming in symplastic transport. Plant Cell Environ. 2003;26:1–15.

    CAS  Google Scholar 

  • Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA. 2002;99:12485–500.

    Google Scholar 

  • Powell MJ. Fine structure of plasmodesmata in Chytrid. Mycology. 1974;66:606–14.

    Google Scholar 

  • Provencher LM, Miao L, Sinha N, Lucas WJ. Sucrose Export Defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell. 2001;13:1127–41.

    PubMed  CAS  Google Scholar 

  • Raven JA. Long-distance transport in non-vascular plants. Plant Cell Environ. 2003;26:73–85.

    Google Scholar 

  • Rinne PLH, van der Schoot C. Symplasmic fields in tunica of the shoot apical meristem coordinate morphogenetic events. Development. 1998;125:1477–85.

    PubMed  CAS  Google Scholar 

  • Rinne PLH, van der Schoot C. Plasmodesmata at the crossroads between development, dormancy, and defense. Can J Bot. 2003;81:1182–97.

    CAS  Google Scholar 

  • Rinne PLH, Kaikuranta PM, van der Schoot C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J. 2001;26:249–64.

    PubMed  CAS  Google Scholar 

  • Roberts AG. Plasmodesmal structure and development. In: Oparka KJ, editor. Plasmodesmata. Oxford: Blackwell; 2005. p. 1–32.

    Google Scholar 

  • Roberts AG, Oparka KJ. Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 2003;26:103–24.

    Google Scholar 

  • Roberts IM, Boevink P, Roberts AG, Sauer N, Reichel C, Oparka KJ. Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma. 2001;218:31–44.

    PubMed  CAS  Google Scholar 

  • Robinson-Beers K, Evert RF. Fine structure of plasmodesmata in mature leaves of sugarcane. Planta. 1991;184:307–18.

    Google Scholar 

  • Rokitta M, Peuke AD, Zimmermann U, Haase A. Dynamic studies of phloem and xylem flow in fully differentiated plants by fast nuclear-magnetic-resonance microimaging. Protoplasma. 1999;209:126–31.

    PubMed  CAS  Google Scholar 

  • Romberger JA, Hejnowicz Z, Hill JF. Plant structure: function and development. Berlin: Springer-Verlag; 1993.

    Google Scholar 

  • Rudzińska-Langwald A, Kamińska M. Cytopathological evidence for transport of phytoplasma in infected plants. Acta Soc Bot Pol. 1999;68:261–6.

    Google Scholar 

  • Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell. 1996;8:645–58.

    PubMed  CAS  Google Scholar 

  • Rustom A. Hen or egg? Some thoughts on tunneling nanotubes. Ann NY Acad Sci. 2009; 1178:129–36.

    PubMed  CAS  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H-H. Nanotubular highways for intercellular organelle transport. Science. 2004;303:1007–10.

    PubMed  CAS  Google Scholar 

  • Rutschow HL, Baskin TI, Kramer EM. Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol. 2011;155:1817–26.

    PubMed  CAS  Google Scholar 

  • Rutten T, Krüger C, Melzer M, Stephan UW, Hell R. Discovery of an extended bundle sheath in Ricinus communis L. and its role as a temporal storage compartment for the iron chelator nicotianamine. Planta. 2003;217:400–6.

    PubMed  CAS  Google Scholar 

  • Sage RF, Pearcy RW. The physiological ecology of C4 photosynthesis. In: Leegood RC, Sharkey TD, von Caemmerer S, editors. Photosynthesis, physiology and metabolism. Dordrecht: Kluwer Academic; 2000. p. 497–532.

    Google Scholar 

  • Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 2003;132:2184–95.

    PubMed  CAS  Google Scholar 

  • Schmitz K, Srivastava LM. Fine structure and development of sieve tubes in Laminaria groenlandica Rosenv. Cytobiology. 1974;10:66–87.

    Google Scholar 

  • Sear RP. The cytoplasm of living cells: a functional mixture of thousands of components. J Phys Condens Matter. 2005;17:S3587–95.

    CAS  Google Scholar 

  • Shimmen T, Yokota E. Cytoplasmic streaming in plants. Curr Opin Cell Biol. 2004;16:68–72.

    PubMed  CAS  Google Scholar 

  • Sjölund RD. The phloem sieve element: a river runs through it. Plant Cell. 1997;9:1137–46.

    PubMed  Google Scholar 

  • Smaoui A, Barhoumi Z, Rabhi M, Abdelly C. Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma. 2011;248:363–72.

    PubMed  CAS  Google Scholar 

  • Smoot EL. Phloem anatomy of the carboniferous coenopterid ferns Anachoropteris and Ankyropteris. Am J Bot. 1985;72:191–208.

    Google Scholar 

  • Sowiński P. The effect of irradiance, p-chloromercuribenzensulphonic acid and fusicoccin on the long distance transport in Zea mays L. seedlings. Acta Physiol Plant. 1998;20:79–84.

    Google Scholar 

  • Sowiński P, Bednarek B, Jeleń K, Kowalski T, Ostrowski K. An in vivo method for the transport study of assimilated substances using 14C-isotope and X-ray proportional counters. Acta Physiol Plant. 1990;2:139–48.

    Google Scholar 

  • Sowiński P, Rudzińska-Langwald A, Dalbiak A, Sowińska A. Assimilate export from leaves of chilling-treated seedlings of maize. The path to vein. Plant Physiol Biochem. 2001;39:881–9.

    Google Scholar 

  • Sowiński P, Rudzińska-Langwald A, Kobus P. Changes in plasmodesmata frequency in vascular bundles of maize seedling leaf induced by growth at suboptimal temperatures in relation to photosynthesis and assimilate export. Environ Exp Bot. 2003;50:183–96.

    Google Scholar 

  • Sowiński P, Bilska A, Barańska K, Fronk J, Kobus P. Plasmodesmata density in vascular bundles in leaves of C4 grasses grown at different light conditions in respect to photosynthesis and photosynthate export efficiency. Environ Exp Bot. 2007;61:74–84.

    Google Scholar 

  • Sowiński P, Szczepanik J, Minchin PEH. On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses. J Exp Bot. 2008; 59:1137–47.

    PubMed  Google Scholar 

  • Spanner DC. Electro-osmotic flow. In: Zimmermann MH, Milburn JA, editors. Transport in the phloem. Encyclopedia of Plant Physiology (N.S.). Heidelberg: Springer-Verlag; 1975. p. 301–327.

    Google Scholar 

  • Stegemann S, Bock R. Exchange of genetic material between cells in plant tissue grafts. Science. 2009;324:649–51.

    PubMed  CAS  Google Scholar 

  • Stegemann S, Keuthe M, Greiner S, Bock R. Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci USA. 2012;109:2434–8.

    PubMed  CAS  Google Scholar 

  • Strasburger E. Ueber Plasmaverbindungen pflanzlicher Zellen. Jahrb Wiss Bot. 1901; 36: 493–601.

    Google Scholar 

  • Talianova M, Janousek B. What can we learn from tobacco and other Solanaceae about horizontal DNA transfer? Am J Bot. 2011;98:1231–42.

    PubMed  Google Scholar 

  • Tangl E. Ueber offene Communicationen zwischen den Zellen des Endosperms einiger Samen. Jahrb Wiss Bor. 1880;12:170–90.

    Google Scholar 

  • Taylor JW, Fuller MS. Microtubules, organelle movement, and cross-wall formation at the sporangial-rhizoidal interface in the fungus, Chytridium confervae. Protoplasma. 1980; 104:201–21.

    Google Scholar 

  • Terry BR, Robards AW. Hydrodynamics radius alone governs the mobility of molecules through plasmodesmata. Planta. 1987;171:145–57.

    CAS  Google Scholar 

  • Thompson MV, Holbrook NM. Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ. 2003;26:1561–77.

    Google Scholar 

  • Thyssen G, Svab Z, Maliga P. Cell-to-cell movement of plastids in plants. Proc Natl Acad Sci USA. 2012;109:2439–43.

    PubMed  CAS  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS, Tilney MS. The structure of plasmodesmata as revealed by plasmolysis, detergent extraction and protease digestion. J Cell Biol. 1991;112:739–47.

    PubMed  CAS  Google Scholar 

  • Tilsner J, Amari K, Torrance L. Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma. 2011;248:39–60.

    PubMed  CAS  Google Scholar 

  • Troughton JH, Currie BG. Relations between light level, sucrose concentration, and translocation of carbon 11 in Zea mays leaves. Plant Physiol. 1977;59:808–20.

    PubMed  CAS  Google Scholar 

  • Tucker EB. Translocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probes. Protoplasma. 1982;113:193–201.

    CAS  Google Scholar 

  • Tucker EB. Cytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpurea. Protoplasma. 1987;137:140–4.

    Google Scholar 

  • Tucker EB. Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta. 1990;182:34–8.

    CAS  Google Scholar 

  • Tucker EB, Tucker JE. Cell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpurea. Protoplasma. 1993;174:36–44.

    Google Scholar 

  • Tucker JE, Mauzerall D, Tucker EB. Symplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and induces loss to the vacuole. Plant Physiol. 1989;80:1143–7.

    Google Scholar 

  • Turgeon R, Medville R. The absence of phloem loading in willow leaves. Proc Natl Acad Sci USA. 1998;95:12055–60.

    PubMed  CAS  Google Scholar 

  • Valiullin R, Kortunov P, Kärger J, Timoshenko V. Concentration-dependent self-diffusion of liquids in nanopores: a nuclear magnetic resonance study. J Chem Phys. 2004;120:11804–14.

    PubMed  CAS  Google Scholar 

  • van Bel AJE. Evolution, polymorphology and multifunctionality of the phloem system. Perspect Plant Ecol Evol Syst. 1999;2:163–84.

    Google Scholar 

  • van Bel AJE. The phloem, a miracle of ingenuity. Plant Cell Environ. 2003;26:125–49.

    Google Scholar 

  • van Bel AJE, Knoblauch M. Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol. 2000;27:477–87.

    Google Scholar 

  • van de Meent J-W, Sederman AJ, Gladden LF, Goldstein RE. Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J Fluid Mech. 2010;642:5–14.

    Google Scholar 

  • Velikanov GA, Volobueva OV, Belova LP, Gaponenko EM. Vacuolar symplast as a regulated pathway for water flows in plants. Russ J Plant Physiol. 2005;52:372–7.

    Google Scholar 

  • Verchot-Lubicz J, Goldstein RE. Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma. 2010;240:99–107.

    PubMed  Google Scholar 

  • Verkman AS. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci. 2002;27:27–33.

    PubMed  CAS  Google Scholar 

  • Voitsekhovskaja OV, Koroleva OA, Batashev DR, Knop C, Tomos AD, Gamalei Y, et al. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata. Plan Physiol. 2006;140:383–95.

    CAS  Google Scholar 

  • Volk GM, Turgeon R, Beebe DU. Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L. and Cucurbita pepo L. Planta. 1996;199:425–32.

    Google Scholar 

  • Voo SS, Grimes HD, Lange BM. Cell type-specific transcriptome analysis of the soybean leaf paraveinal mesophyll layer. Plant Mol Biol Rep. 2013;31:210–21.

    CAS  Google Scholar 

  • Wade MH, Trosko JE, Schindler M. A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science. 1986;232:525–8.

    PubMed  CAS  Google Scholar 

  • Waigmann E, Zambryski P. Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell. 1995;7:2069–79.

    PubMed  CAS  Google Scholar 

  • Waigmann E, Zambryski P. Trichome plasmodesmata: a model system for cell-to-cell movement. Adv Bot Res. 2000;31:261–83.

    Google Scholar 

  • Waigmann E, Turner A, Peart J, Roberts K, Zambryski P. Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta. 1997; 203:75–84.

    PubMed  CAS  Google Scholar 

  • Warmbrodt RD, Evert RF. Comparative leaf structure of several species of homosporous Leptosporangiate ferns. Am J Bot. 1979;66:412–40.

    Google Scholar 

  • Weiner H, Burnell JN, Woodrow IE, Heldt HW, Hatch MD. Metabolite diffusion into bundle sheath cells from C4 plants. Relation to C4 photosynthesis and plasmodesmatal function. Plant Physiol. 1988;88:815–22.

    PubMed  CAS  Google Scholar 

  • Wetherbee R, Quirk HM, Mallet JE, Ricker RW. The structure and formation of host-parasite pit connection between the red alga alloparasite Harveyella mirabilis and its red alga host Odonthalia floccosa. Protoplasma. 1984;119:62–73.

    Google Scholar 

  • Wist TJ, Davis AR. Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot. 2006;97:177–93.

    PubMed  Google Scholar 

  • Xu XM, Jackson D. Lights at the end of the tunnel: new views of plasmodesmal structure and function. Curr Opin Plant Biol. 2010;13:684–92.

    PubMed  CAS  Google Scholar 

  • Zhong W, Hartung W, Komor E, Schobert C. Phloem transport of abscisic acid in Ricinus communis L. seedlings. Plant Cell Environ. 1996;19:471–7.

    CAS  Google Scholar 

  • Zhu Y, Qi Y, Xun Y, Owens R, Ding B. Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol. 2002;130:138–46.

    PubMed  CAS  Google Scholar 

  • Zimmermann MH. Long distance transport. Plant Physiol. 1974;54:472–9.

    PubMed  CAS  Google Scholar 

  • Zubrzycki J. Wpływ temperatury na ruch cytoplazmy u Elodea densa Casp. Acta Soc Bot Pol. 1951;21:241–64.

    Google Scholar 

Download references

Acknowledgements

I thank Dr. J. Fronk, Warsaw University, for critical reading of the manuscript. Financial support for the preparation of this manuscript was from grant National Science Centre, Poland, DEC-2012/05/B/NZ9/03407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Sowiński Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sowiński, P. (2013). Characteristics of Symplasmic Transport. In: Sokołowska, K., Sowiński, P. (eds) Symplasmic Transport in Vascular Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7765-5_1

Download citation

Publish with us

Policies and ethics