Skip to main content

Mechanism of Long-Distance Solute Transport in Phloem Elements

  • Chapter
  • First Online:
Symplasmic Transport in Vascular Plants

Abstract

Descriptions for the C/N economy and translocation of solutes in species of lupin (Lupinus albus [L.] and L. angustifolius [L.]) are used to exemplify the “source/sink” relationships of a grain legume. Identification of translocated solutes requires invasive sampling from sieve elements of phloem, and techniques for collection of exudates and limitations in interpreting data are discussed. Mechanisms that fashion the solute composition of phloem are described using the development of pods and seeds as a specific example. In lupin, the two predominant solutes of phloem are sucrose and asparagine and molecular explanations for selectivity in the translocation of these commodities are identified. Critical components such as membrane transporters for both loading and unloading sucrose and asparagine from “source” organs and into “sink” organs, respectively, are described together with the nature and regulation of metabolic pathways for their utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAA:

Days after anthesis

asn:

Asparagine

gln:

Glutamine

asp:

Aspartic acid

glu:

Glutamic acid

SE:

Sieve element

CC:

Companion cell

ASNase:

Asparaginase

References

  • Atkins CA. Ammonia assimilation and export of nitrogen from the legume nodule. In: Dilworth MJ, Glenn AR, editors. Biology and biochemistry of nitrogen fixation. Amsterdam: Elsevier Science Publishers; 1991. p. 1293–319.

    Google Scholar 

  • Atkins CA. Nitrogen assimilation and translocation in relation to plant growth. In: Buxton DH, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF, editors. International crop science I. Madison: Crop Science Society of America; 1993. p. 807–11.

    Google Scholar 

  • Atkins CA, Minchin FR. Oxygen as the major regulating factor in symbiotic nitrogen fixation. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE, editors. Nitrogen fixation: fundamentals and applications. Dordrecht: Kluwer; 1995. p. 801–3.

    Chapter  Google Scholar 

  • Atkins CA, Smith PMC. Translocation in legumes: assimilates, nutrients and signaling molecules. Plant Physiol. 2007;144:550–61.

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA, Pate JS, Sharkey PJ. Asparagine metabolism-key to the nitrogen nutrition of developing legume seeds. Plant Physiol. 1975;56:807–12.

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA, Pate JS, Layzell DB. Assimilation and transport of nitrogen in non nodulated (NO3-grown) Lupinus albus L. Plant Physiol. 1979;64:1078–82.

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA, Pate JS, McNeil DL. Phloem loading and metabolism of xylem-borne compounds in fruiting shoots of a legume. J Exp Bot. 1980;31:1509–20.

    Article  CAS  Google Scholar 

  • Atkins CA, Pate JS, Peoples MB, Joy KW. Amino acid transport, and metabolism in relation to the nitrogen economy of a legume leaf. Plant Physiol. 1983;71:841–8.

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA, Pate JS, Shelp BJ. Effects of short-term N2 deficiency on N metabolism in legume nodules. Plant Physiol. 1984;76:705–10.

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA, Smith PMC, Rodriguez-Medina C. Macromolecules in phloem exudates – a review. Protoplasma. 2011;248:165–72.

    Article  PubMed  CAS  Google Scholar 

  • Biddulph O, Markle J. Translocation of radiophosphorus in the phloem of the cotton plant. Am J Bot. 1944;31:65–70.

    Article  CAS  Google Scholar 

  • Bruneau L, Chapman R, Marsolais F. Co-occurrence of both L-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent L-asparaginase. Planta. 2006;224:668–79.

    Article  PubMed  CAS  Google Scholar 

  • Castaings L, Marchive C, Meyer C, Krapp A. Nitrogen signaling in Arabidopsis: how to obtain insights into complex signaling pathways. J Exp Bot. 2011;62:1391–7.

    Article  PubMed  CAS  Google Scholar 

  • Emery RJN, Qifu M, Atkins CA. The forms and sources of cytokinins in developing Lupinus seeds and fruits. Plant Physiol. 2000;123:1593–604.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson M. Characterisation and manipulation of genes involved in nitrogen metabolism during lupin (Lupinus angustifolius L.cv Merrit) seed development [dissertation]. School of Plant Biology, The University of Western Australia; 2005.

    Google Scholar 

  • Fischer WN, Loo DDF, Koch W, Ludewig U, Boorer KJ, Tegeder M, et al Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J. 2002;29:717–31.

    Article  PubMed  CAS  Google Scholar 

  • Foley RC, Gao L-L, Spriggs A, Soo LYC, Goggin DE, Smith PMC, et al Identification and characterization of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol. 2011;11:59–72.

    Article  PubMed  CAS  Google Scholar 

  • Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA, et al Phloem ultrastructure and pressure flow: sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell. 2011;23:4428–45.

    Article  PubMed  CAS  Google Scholar 

  • Gaufichon L, Masclaux-Daubresse C, Tcherkezt G, Reisdorf-Cren M, Sakakibara Y, et al Arabidopsis thaliana ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. Plant Cell Environ. 2013;36:328–42.

    Article  PubMed  CAS  Google Scholar 

  • Gessler A, Weber P, Schneider S, Rennenberg H. Bidirectional exchange of amino compounds between phloem and xylem during long-distance transport in Norway spruce trees (Picea abies [L.] Karst). J Exp Bot. 2003;54:1389–97.

    Article  PubMed  CAS  Google Scholar 

  • Gould N, Thorpe MR, Pritchard J, Christeller JT, Williams LE, Roeb G, et al AtSUC2 has a role for sucrose retrieval along the phloem pathway: evidence from carbon-11 tracer studies. Plant Sci. 2012;118–119:97–101.

    Article  Google Scholar 

  • Grant M, Bevan MW. Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen sink tissues. Plant J. 1994;5:695–704.

    Article  CAS  Google Scholar 

  • Guelette BS, Benning UF, Hoffmann-Benning S. Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot. 2012;63:3603–16.

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES, Pate JS, Green LW. Transfer cells in the vascular system of stems: taxonomy, association with nodes and structure. Protoplasma. 1970;71:141–71.

    Article  Google Scholar 

  • Halperin W, Wetherell DF. Ammonium requirement for embryogenesis in vitro. Nature. 1965;205:519–20.

    Article  Google Scholar 

  • Harris WR, Sammons RD, Grabiak RC. A Speciation model of essential trace metal ions in phloem. J Inorg Biochem. 2012;116:140–50.

    Article  PubMed  CAS  Google Scholar 

  • Herren T, Feller U. Transfer of zinc from xylem to phloem in the peduncle of wheat. J Plant Nutr. 1994;17:1587–98.

    Article  CAS  Google Scholar 

  • Hocking PJ, Pate JS. Mobilization of minerals to developing seeds of legumes. Ann Bot. 1977;41:1259–78.

    CAS  Google Scholar 

  • Hunt E, Gattolin S, Newbury HJ, Bale JS, Tseng H-M, Barrett DA, et al A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J Exp Bot. 2010;61:55–64.

    Article  PubMed  CAS  Google Scholar 

  • Jeschke WD, Atkins CA, Pate JS. Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J Plant Physiol. 1985;117:319–30.

    Article  CAS  Google Scholar 

  • Knoblauch M, Oparka K. The structure of the phloem-still more questions than answers. Plant J. 2012;70:147–56.

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch M, Stubenrauch M, van Bel AJE, Peters WS. Forisome performance in artificial sieve tubes. Plant Cell Environ. 2012;35:1419–27.

    Article  PubMed  Google Scholar 

  • Komor E, Orlich G, Weig A, Köckenberger W. Phloem loading-not metaphysical, only complex: towards a unified model of phloem loading. J Exp Bot. 1996;47:1155–64.

    Article  PubMed  CAS  Google Scholar 

  • Kuo J, Pate JS, Rainbird RM, Atkins CA. Internodes of grain legumes – New location for xylem parenchyma transfer cells. Protoplasma. 1980;104:181–5.

    Article  Google Scholar 

  • Lam H-M, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, et al Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell. 1995;7:887–98.

    PubMed  CAS  Google Scholar 

  • Layzell DB, Pate JS, Atkins CA, Canvin DT. Partitioning of carbon and nitrogen and nutrition of root and shoot apex in a nodulated legume. Plant Physiol. 1981;67:30–6.

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Tegeder M. Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. Plant J. 2004;40:60–74.

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Pate JS, Harris DJ, Atkins CA. Synthesis, transport and accumulation of quinolizidine alkaloids in Lupinus albus L. and L. angustifolius L. J Exp Bot. 2007;58:935–46.

    Article  PubMed  CAS  Google Scholar 

  • Liu DD, Chao WM, Turgeon R. Transport of sucrose, not hexose, in the phloem. J Exp Bot. 2012;63:4315–20.

    Article  PubMed  CAS  Google Scholar 

  • Marinos NG. Embryogenesis of the pea (Pisum sativum) I. The cytological environment of the developing embryo. Protoplasma. 1970;70:261–79.

    Article  Google Scholar 

  • McNeil D, Atkins CA, Pate JS. Uptake and utilization of xylem borne amino compounds by shoot organs of a legume. Plant Physiol. 1979;63:1076–81.

    Article  PubMed  CAS  Google Scholar 

  • Murray DR. Functional significance of acid phosphatase distribution during embryo development in Pisum sativum L. Ann Bot. 1980;45:273–81.

    CAS  Google Scholar 

  • Pate JS, Atkins CA. Xylem and phloem transport and the functional economy of carbon and nitrogen of a legume leaf. Plant Physiol. 1983;71:835–40.

    Article  PubMed  CAS  Google Scholar 

  • Pate JS, Atkins CA, Hamel K, McNeil DL, Layzell DB. Transport of organic solutes in phloem and xylem of a nodulated legume. Plant Physiol. 1979;63:1082–8.

    Article  PubMed  CAS  Google Scholar 

  • Pate JS, Layzell DB, Atkins CA. Transport exchanges of carbon, nitrogen and water in the context of whole plant growth and functioning – case history of a nodulated annual legume. Ber Dtsch Bot Ges. 1980;93:243–55.

    CAS  Google Scholar 

  • Patrick JW, Offler CE. Post sieve-element transport of sucrose in developing seeds. Aust J Plant Physiol. 1995;22:681–702.

    Article  CAS  Google Scholar 

  • Peuke AD. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J Exp Bot. 2010;61:635–55.

    Article  PubMed  CAS  Google Scholar 

  • Pompon J, Quiring D, Goyer C, Giordanengo P, Pelletier Y. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. J Insect Physiol. 2011;57:1317–22.

    Article  PubMed  CAS  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 2007;581:2281–9.

    Article  PubMed  CAS  Google Scholar 

  • Riens B, Lohaus G, Heineke D, Heldt HW. Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves. Plant Physiol. 1991;97:227–33.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Medina C. Study of macromolecules in phloem exudates of Lupinus albus. [dissertation]. School of Plant Biology, The University of Western Australia; 2009.

    Google Scholar 

  • Rodriguez-Medina C, Atkins CA, Mann A, Jordan M, Smith PMC. Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC Plant Biol. 2011;11:36–54.

    Article  PubMed  CAS  Google Scholar 

  • Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 2009;59:540–52.

    Article  PubMed  CAS  Google Scholar 

  • Scheible W, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, et al Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004;136:2483–99.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Stransky H, Koch W. The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta. 2007;226:805–13.

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Schatten T, Rennenberg H. Exchange between phloem and xylem during long distance transport of glutathione in spruce trees (Picea abies [Karst.] L.). J Exp Bot. 1994;45:457–62.

    Article  CAS  Google Scholar 

  • Smith JG. Embryo development in Phaseolus vulgaris. II. Analysis of selected inorganic ions, ammonia, organic acids, amino acids and sugars in the endosperm liquid. Plant Physiol. 1973;51:454–8.

    Article  PubMed  CAS  Google Scholar 

  • Sulieman S, Tran L-SP. Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit Rev Biotechnol. 2012. doi:10.3109/07388551.2012.695770

    Google Scholar 

  • Sulieman S, Fischinger SA, Gresshoff PM, Schulze J. Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant. 2010;140:21–31.

    Article  PubMed  CAS  Google Scholar 

  • Tegeder M. Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol. 2012;15:315–21.

    Article  PubMed  CAS  Google Scholar 

  • Tegeder M, Rentsch D, Patrick JW. Organic carbon and nitrogen transporters. In: Murphy AS, Peer W, Schulz, editors. The plant plasma membrane, Plant Cell Monographs 19, Berlin: Springer-Verlag; 2011. p. 331–52.

    Google Scholar 

  • van Bel AJE. Xylem–phloem exchange via the rays: the undervalued route of transport. J Exp Bot. 1990;41:631–44.

    Article  Google Scholar 

  • van Bel AJE, Hess PH. Hexoses as phloem transport sugars: the end of a dogma? J Exp Bot. 2008;59:261–72.

    Article  PubMed  Google Scholar 

  • Voitsekhovskaja OV, Koroleva OA, Batashev DR, Knop C, Tomos D, Gamalei YV, et al Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata? Plant Physiol. 2006;140:383–95.

    Article  PubMed  CAS  Google Scholar 

  • Walker GP, Medina-Ortega KJ. Penetration of faba bean sieve elements by pea aphid does not trigger forisome dispersal. Entomol Exp Appl. 2012;144:326–35.

    Article  Google Scholar 

  • Weber H, Borisjuk L, Wobus U. Sugar import and metabolism during seed development. Trends Plant Sci. 1997;2:169–74.

    Article  Google Scholar 

  • Zhang L, Tan Q, Lee R, Trethewy A, Lee Y-H, Tegeder M. Altered xylem phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell. 2010;22:3603–20.

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Yu X, Ayre BG, Turgeon R. The origin and composition of cucurbit “phloem” exudate. Plant Physiol. 2012;158:1873–82.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MR, Hafke JB, van Bel AJE, Furch ACU. Interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima. Plant Cell Environ. 2013;36:237–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Atkins B.Sc. Agr. (Hons.), M.Sc. Agr., Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atkins, C.A. (2013). Mechanism of Long-Distance Solute Transport in Phloem Elements. In: Sokołowska, K., Sowiński, P. (eds) Symplasmic Transport in Vascular Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7765-5_6

Download citation

Publish with us

Policies and ethics