Skip to main content
Log in

Analysis of the multi-pore system of alamethicin in a lipid membrane

I. Voltage-jump current-relaxation measurements

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The electrical properties of an alamethicin multi-pore system have been studied by voltage-jump current-relaxation experiments (this paper) and by autocorrelation and spectral analysis (following paper). With these methods a slow time constant and a fast time constant were observed which differ by about one to three orders of magnitude depending on the experimental conditions. Steady-state current and time constants were analyzed as functions of voltage, alamethicin concentration and temperature. Within experimental error the data obtained with these different methods are in good agreement. The experimentally measured relation between the voltage and alamethicin concentration dependence of the slow relaxation time fits into a model of an alamethicin pore which adopts consecutive pore states and which decays only from the lowest state. It indicates that the uptake of one alamethicin molecule by the existing pore and, in formal equivalence, the transfer of about one positive elementary charge across the membrane are associated with the transition from a given pore conductance state to the next higher state. From the voltage and alamethicin concentration dependence of the pore formation rate evidence shows that a hexameric preaggregate exists at the membrane interface out of which two to three molecules are simultaneously inserted into the membrane to form the pore nucleus. The effects of different voltage pretreatment on the experimentally determined parameters have been investigated and are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamberg, E., Benz, R. 1976. Voltage induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formation.Biochim. Biophys. Acta 426:570

    Google Scholar 

  • Bamberg, E., Läuger, P. 1973. Channel formation kinetics of gramicidin A in lipid bilayer membranes.J. Membrane Biol. 11:177

    Google Scholar 

  • Baumann, G., Mueller, P. 1974. A molecular model of membrane excitability.J. Supramolec. Struct. 2:538

    Google Scholar 

  • Benz, R., Fröhlich, O., Läuger, P., Montal, M. 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers.Biochim. Biophys. Acta 394:323

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Google Scholar 

  • Boheim, G. 1974. Statistical analysis of alamethicin channels in black lipid membranes.J. Membrane Biol. 19:277

    Google Scholar 

  • Boheim, G. 1975. Untersuchungen zur Kinetik der Porenbildung durch Alamethicin in Lipidmembranen.Ber. Bunsenges. Phys. Chem. 79:1168

    Google Scholar 

  • Boheim, G., Janko, K., Leibfritz, D., Ooka, T., König, W.A., Jung, G. 1976. Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part B: Pore formation in black lipid films.Biochim. Biophys. Acta 433:182

    Google Scholar 

  • Chelack, W.S., Petkau, A. 1973. Distribution of alamethicin in lipid membranes and water.J. Lipid Res. 14:255

    Google Scholar 

  • Cherry, R.J., Chapman, D., Graham, D.E. 1972. Studies on the conductance changes induced in biomolecular lipid membranes by alamethicin.J. Membrane Biol. 7:325

    Google Scholar 

  • Eisenberg, M. 1972. Voltage Gateable Ionic Pores Induced by Alamethicin in Black Lipid Membranes. Ph. D. Thesis. California Institute of Technology, Pasadena, California

    Google Scholar 

  • Eisenberg, M., Hall, J.E., Mead, C.A. 1973. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes.J. Membrane Biol. 14:143

    Google Scholar 

  • Gisin, B.F., Kobayashi, S., Hall, J.E. 1977. Synthesis of a 19-residue peptide with alamethicin-like activity.Proc. Nat. Acad. Sci. USA 74:115

    Google Scholar 

  • Gordon, L.G.M. 1974. Ion transport via alamethicin channels.In: Drugs and Transport. B.A. Callingham, editor. p. 251. University Park Press, London

    Google Scholar 

  • Gordon, L.G.M., Haydon, D.A. 1972. The unit conductance channel of alamethicin.Biochim. Biophys. Acta 255:1014

    Google Scholar 

  • Gordon, L.G.M., Haydon, D.A. 1975. Potential-dependent conductances in lipid membranes containing alamethicin.Phil. Trans. R. Soc. London B. 270:433

    Google Scholar 

  • Gordon, L.G.M., Haydon, D.A. 1976. Kinetics and stability of alamethicin conducting channels in lipid bilayers.Biochim. Biophys. Acta 436:541

    Google Scholar 

  • Hall, J.E. 1975. Toward a molecular understanding of excitability.Biophys. J. 15:934

    Google Scholar 

  • Haydon, D.A., Hladky, S.B., Gordon, L.G.M. 1972. The single channel technique in the study of ion transfer across membranes.In: Fed. Europ. Biochem. Soc., Mitochondria/ Biomembranes, Vol. 28. North Holland Publishing Co., Amsterdam, p. 307

    Google Scholar 

  • Henn, F.A., Decker, G.L., Greenawalt, J.W., Thompson, T.E. 1967. Properties of lipid bilayer membranes separating two aqueous phases: Electron microscope studies.J. Mol. Biol. 24:51

    Google Scholar 

  • Heyer, E.J., Muller, R.U., Finkelstein, A. 1976. Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. II. Inactivation produced by monazomycin transport through the membrane.J. Gen. Physiol. 67:731

    Google Scholar 

  • Jung, G., Dubischar, N., Leibfritz, D. 1975. Conformational changes of alamethicin induced by solvent and temperature. A13C-NMR and circular-dichroism study.Eur. J. Biochem. 54:395

    Google Scholar 

  • Jung, G., König, W.A., Leibfritz, D., Ooka, T., Janko, K., Boheim, G. 1976. Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Part A: Sequence and conformation.Biochim. Biophys. Acta 433:164

    Google Scholar 

  • Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Google Scholar 

  • Kolb, H.-A., Bamberg, E. 1977. Influence of membrane thickness and ion concentration on the properties of the gramicidin A channel: Autocorrelation, spectral power density, relaxation and single channel studies.Biochim. Biophys. Acta 464:127

    Google Scholar 

  • Kolb, H.-A., Boheim, G. 1977. Analysis of the multi-pore system of alamethicin in a lipid membrane. II. Autocorrelation analysis and power spectral density.J. Membrane Biol. 38:151

    Google Scholar 

  • Kolb, H.-A., Läuger, P., Bamberg, E. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels.J. Membrane Biol. 20:133

    Google Scholar 

  • Martin, D.R., Williams, R.J.P. 1975. The nature and function of alamethicin.Biochem. Soc. Trans. 3:166

    Google Scholar 

  • Martin, D.R., Williams, R.J.P. 1976. Chemical nature and sequence of alamethicin.Biochem. J. 153:181

    Google Scholar 

  • Mauro, A., Nanavati, R.P., Heyer, E. 1972. Time-variant conductance of bilayer membranes treated with monazomycin and alamethicin.Proc. Nat. Acad. Sci. USA 69:3742

    Google Scholar 

  • Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties.Proc. Nat. Acad. Sci. USA 69:3561

    Google Scholar 

  • Moore, L.E., Neher, E. 1976. Fluctuation and relaxation analysis of monazomycin induced conductance in black lipid membranes.J. Membrane Biol. 27:347

    Google Scholar 

  • Mueller, P. 1976a. Membrane excitation through voltage induced aggregation of channel precursors.Ann. N.Y. Acad. Sci. 264:247

    Google Scholar 

  • Mueller, P. 1976b. Electrical excitability in lipid bilayers and cell membranes.In: MTP International Review of Science, Biochemistry Series One, Vol. 3: Energy Transducing Mechanisms. E. Racker, editor. p. 75. Butterworth, London

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1968. Action potentials induced in bimolecular lipid membranes.Nature (London) 217:713

    Google Scholar 

  • Ooka, T., Shimojima, Y., Akimoto, T., Takeda, I., Senoh, S., Abe, J. 1966. A new antibacterial peptide ‘suzukacillin’.Agric. Biol. Chem. 30:700

    Google Scholar 

  • Ooka, T., Takeda, I. 1972. Studies of the peptide antibiotic suzukacillin.Agric. Biol. Chem. 36:112

    Google Scholar 

  • Roy, G. 1975. Properties of the conductance induced in lecithin bilayer membranes by alamethicin.J. Membrane Biol. 24:71

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981

    Google Scholar 

  • Zingsheim, H.P., Neher, E. 1974. The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes.Biophys. Chem. 2:197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boheim, G., Kolb, HA. Analysis of the multi-pore system of alamethicin in a lipid membrane. J. Membrain Biol. 38, 99–150 (1978). https://doi.org/10.1007/BF01875164

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875164

Keywords

Navigation