Skip to main content
Log in

Role of the sodium pump and the background K+ channel in passive K+(Rb+) uptake by isolated cardiac sarcolemmal vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A simple procedure was developed for the isolation of a sarcolemma-enriched membrane preparation from homogenates of bullfrog (Rana catesbeiana) heart. Crude microsomes obtained by differential centrifugation were fractionated in Hypaque density gradients. The fraction enriched in surface membrane markers consisted of 87% tightly sealed vesicles. The uptake of86Rb+ by the preparation was measured in the presence of an opposing K+ gradient using a rapid ion exchange technique. At low extravesicular Rb+ concentrations, at least 50% of the uptake was blocked by addition of 1mm ouabain to the assay medium. Orthovanadate (50 μm), ADP (2.5mm), or Mg (1mm) were also partial inhibitors of Rb+ uptake under these conditions, and produced a complete block of Rb+ influx in the presence of 1mm ouabain. When86Rb+ was used as a tracer of extravesicular K+ (Rb +0 ≦40 μm K +0 =0.1–5mm) a distinct uptake pathway emerged, as detected by its inhibition by 1mm Ba2+ (K 0.5=20 μm). At a constant internal K+ concentration (K +in =50mm) the magnitude of the Ba2+-sensitive K+ uptake was found to depend on K +0 in a manner that closely resembles the K+ concentration dependence of the background K+ conductance (I Kl) observed electrophysiologically in intact cardiac cells. We conclude that K+ permeates passively this preparation through two distinct pathways, the sodium pump and a system identifiable as the background potassium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akera, T. 1984. Methods for studying digitalis receptors, Na,K-ATPase and sodium pump activity in heart membranes and myocardium.In: Methods in Studying Cardiac Membranes. N.S. Dhalla editor. Vol. 2, pp. 163–180. CRC Press, Boca Raton

    Google Scholar 

  • Akera, T., Ng, Y.C., Shieh, I.S., Bero, E., Brody, T.M., Braselton, W.E. 1985. Effects of K+ on the interaction between cardiac glycosides and Na,K-ATPase.Eur. J. Pharmacol. 111:147–157

    PubMed  Google Scholar 

  • Barr, L., Connor, J.A., Dewey, M.M., Aprille, J., Johnston, P.V. 1974. The isolation of plasma membrane from frog cardiac muscle cells.Biochim. Biophys. Acta 345:336–347

    Google Scholar 

  • Bers, D.M. 1979. Isolation and characterization of cardiac sarcolemma.Biochim. Biophys. Acta 555:131–146

    PubMed  Google Scholar 

  • Bers, D.M., Phillipson, K.D., Nishimoto, A.Y. 1980. Sodiumcalcium exchange and sidedness of isolated cardiac sarcolemmal vesicles.Biochim. Biophys. Acta 601:358–371

    PubMed  Google Scholar 

  • Boumendil-Podevin, E.G., Podevin, R.A. 1983. Isolation of basolateral and brush border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction.Biochim. Biophys. Acta 735:86–94

    PubMed  Google Scholar 

  • Burnham, C., Karlish, S.J.D., Jorgensen, P.L. 1985. Identification and reconstituion of a Na+/K+/Cl cotransporter and K+ channel from luminal membranes of renal red outer medulla.Biochim. Biophys. Acta 821:461–469

    PubMed  Google Scholar 

  • Carmeliet, E., Vereecke, J. 1979. Electrogenesis of the action potential and automaticity.In: Handbook of Physiology, The Cardiovascular System. R.M. Berne, editor. Vol. I, pp. 269–333. American Physiological Society, Bethesda, Maryland

    Google Scholar 

  • Caroni, P., Carafoli, E. 1983. The regulation of the Na−Ca2+ exchanger of heart sarcolemma.Eur. J. Biochem. 132:451–460

    Google Scholar 

  • Cohen, I.S., Falk, R.T., Mulrine, N.K. 1983. Actions of barium and rubidium on membrane currents in canine Purkinje fibers.J. Physiol. (London) 338:589–612

    Google Scholar 

  • Forbush, B. 1982. Characterization of the right-side-out membrane vesicles rich in (Na, K)-ATPase and isolated from dog kidney outer, medulla.J. Biol. Chem. 257:12678–12684

    PubMed  Google Scholar 

  • Forbush, B. 1983. Cardiotonic steroid binding to Na,K-ATPase.Curr. Top. Membr. Transp. 19:167–201

    Google Scholar 

  • Fozzard, H.A., Lee, C.O. 1976. Influence of changes in external potassium and chloride ions on membrane potential and intracellular potassium ion activity in rabbit ventricular muscle.J. Physiol. (London) 256:663–689

    Google Scholar 

  • Frank, J.S., Phillipson, K.D., Beydler, S. 1984. Ultrastructure of isolated sarcolemma from dog and rabbit myocardium.Circ. Res. 54:414–423

    PubMed  Google Scholar 

  • Garty, H., Rudy, B., Karlish, S.J.D. 1983. A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogeneous populations of membrane vesicles.J. Biol. Chem. 258:13094–13099

    PubMed  Google Scholar 

  • Glitsch, H.G., Pusch, H., Schumacher, T.H., Verdonck, F. 1982. An identification of the K activated Na pump current in sheep Purkinje fibers.Pfluegers Arch. 382:256–263

    Google Scholar 

  • Hume, J.R., Giles, W. 1983. Ionic currents in single isolated bullfrog atrial cells.J. Gen. Physiol. 81:153–194

    PubMed  Google Scholar 

  • Hunter, D.D., Nathanson, N.M. 1985. Assay of muscarinic acetylcholine receptor function in cultured cardiac cells by stimulation of86Rb+ efflux.Anal. Biochem. 149:392–398

    PubMed  Google Scholar 

  • Jones, L.R., Maddock, S.W., Besch, H.R. 1980. Unmasking effect of alamethicin on the (Na+, K+)-ATPase, β-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles.J. Biol. Chem. 255:9971–9980

    PubMed  Google Scholar 

  • Jorgensen, P.L. 1980. Sodium and potassium ion pump in kidney tubules.Physiol. Rev. 60:864–917

    PubMed  Google Scholar 

  • Karlish, S.J.D., Pick, V. 1981. Sidedness, of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump.J. Physiol. (London) 312:505–529

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1982a. Effects of ATP or phosphate on passive rubidium fluxes mediated by Na−K-ATPase reconstituted into phospholipid vesicles.J. Physiol. (London) 328:317–331

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1982b. Passive rubidium fluxes mediated by Na−K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.J. Physiol. (London) 328:295–316

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1985. Cation activation of the pig kidney sodium pump: Transmembrane allosteric effects of sodium.J. Physiol. (London) 359:119–149

    Google Scholar 

  • Kenney, L.J., Kaplan, J.H. 1986. Red cell sodium pump mediates86Rb uptake in the absence of phosphorylation.Biophys. J. 49:37a

    Google Scholar 

  • King, T.E. 1967. Preparations of succinate-cytochromec reductase and the cytochromeb-c particle, and reconstitution of succinate-cytochromec reductase.In: Methods in Enzymology. R.W. Estabrook and M.E. Pullman, editors. Vol. 10, p. 216. Academic, New York

    Google Scholar 

  • Langridge-Smith, J.E., Dubinsky, W.P. 1986. Relationship of the donnan potential to the transmembrane pH gradient in tracheal apical membrane vesicles.J. Membrane Biol. 94:197–204

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Momose, Y., Giles, W., Szabo, G. 1983. An inwardly rectifying K+ current in bullfrog atrial cells.Biophys. J. 41:311a

    Google Scholar 

  • Nakao, M., Gadsby, D.C. 1986. Voltage dependence of Na translocation by the Na/K pump.Nature (London) 323:628–630

    Google Scholar 

  • Phillipson, K.D., Nishimoto, A.Y. 1982. Na+−Ca2− exchange in inside-out cardiac sarcolemmal vesicles.J. Biol. Chem. 257:5111–5117

    PubMed  Google Scholar 

  • Reeves, J.P., Sutko, J.L. 1979. Sodium-calcium ion exchange in cardiac membrane vesicles.Proc. Natl. Acad. Sci. USA 76:590–594

    PubMed  Google Scholar 

  • Sachs, J.R. 1986. Potassium-potassium exchange as part of the over-all reaction mechanism of the sodium pump of the human red blood cell.J. Physiol. (London) 374:221–244

    Google Scholar 

  • Sachs, J.R., Conrad, M.E. 1968. Effect of tetraethylammonium on the active cation transport of the red blood cell.Am. J. Physiol. 215:795–798

    PubMed  Google Scholar 

  • Sakmann, B., Trube, G. 1984. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart.J. Physiol. (London) 347:641–657

    Google Scholar 

  • Schilling, W.P., Drewe, A. 1986. Voltage-sensitive nitrendipine binding in an isolated cardiac sarcolemma preparation.J. Biol. Chem. 261:2750–2758

    PubMed  Google Scholar 

  • Schilling, W.P., Schuil, D.W., Bagwell, E.E., Lindenmayer, G.E. 1984. Sodium and potassium permeability of membrane vesicles in a sarcolemma-enriched preparation from canine ventricles.J. Membrane Biol. 77:101–114

    Google Scholar 

  • Schwartz, A., Lindenmayer, G.E., Allen, J.C. 1975. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects.Pharmacol. Rev. 27:3–134

    PubMed  Google Scholar 

  • Slaughter, R.S., Sutko, J.L., Reeves, J.P. 1983. Equilibrium calcium-calcium exchange in cardiac sarcolemmal vesicles.J. Biol. Chem. 258:3183–3190

    PubMed  Google Scholar 

  • Smith, R.L., Zinn, K., Cantley, L.C. 1980. A study of the vanadate-trapped state of the (Na,K)-ATPase. Evidence against interacting nucleotide site models.J. Biol. Chem. 255:9852–9859

    PubMed  Google Scholar 

  • Sommer, J.R., Johnson, E.A. 1969. Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts.Z. Zellforsch. 98:437–468

    PubMed  Google Scholar 

  • Van Alstyne, E., Burch, R.M., Knickelbein, R.G., Hungerford, R.T., Gower, E.J., Webb, J.G., Poe, S.L., Lindenmayer, G.E. 1980. Isolation of sealed vesicles highly enriched with sarcolemma markers from canine ventricle.Biochim. Biophys. Acta 602:131–143

    PubMed  Google Scholar 

  • Wellsmith, N.V., Lindenmayer, G.E. 1980. Two receptor forms for ouabain in sarcolemma-enriched preparations from canine ventricle.Circ. Res. 47:710–720

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, A.S., Szabo, G. Role of the sodium pump and the background K+ channel in passive K+(Rb+) uptake by isolated cardiac sarcolemmal vesicles. J. Membrain Biol. 104, 253–263 (1988). https://doi.org/10.1007/BF01872327

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872327

Key Words

Navigation