Skip to main content

Calcium Uptake in Crude Tissue Preparation

  • Protocol
P-Type ATPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

Abstract

The various isoforms of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) are responsible for the Ca2+ uptake from the cytosol into the endoplasmic or sarcoplasmic reticulum (ER/SR). In some tissues, the activity of SERCA can be modulated by binding partners, such as phospholamban and sarcolipin. The activity of SERCA can be characterized by its apparent affinity for Ca2+ as well as maximal enzymatic velocity. Both parameters can be effectively determined by the protocol described here. Specifically, we describe the measurement of the rate of oxalate-facilitated 45Ca uptake into the SR of crude mouse ventricular homogenates. This protocol can easily be adapted for different tissues and animal models as well as cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ebashi S, Lipmann F (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14:389–400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hasselbach W, Makinose M (1962) The calcium pump of the “relaxing granules” of muscle and its dependence on ATP-splitting. Biochem Z 333:518–528

    Google Scholar 

  3. Hasselbach W, Makinose M (1963) on the Mechanism of Calcium Transport Across the Membrane of the Sarcoplasmic Reticulum. Biochem Z 339:94–111

    PubMed  CAS  Google Scholar 

  4. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  5. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  PubMed  CAS  Google Scholar 

  6. MacLennan DH, Brandl CJ, Korczak B, Green NM (1985) Amino-acid sequence of a Ca2+ + Mg2 + -dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700

    Article  PubMed  CAS  Google Scholar 

  7. Brandl CJ, Green NM, Korczak B, MacLennan DH (1986) Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607

    Article  PubMed  CAS  Google Scholar 

  8. MacLennan DH (1970) Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 245:4508–4518

    PubMed  CAS  Google Scholar 

  9. Tada M, Kirchberger MA, Katz AM (1975) Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 250:2640–2647

    PubMed  CAS  Google Scholar 

  10. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  PubMed  CAS  Google Scholar 

  11. Odermatt A, Becker S, Khanna VK et al (1998) Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2 + -ATPase. J Biol Chem 273:12360–12369

    Article  PubMed  CAS  Google Scholar 

  12. MacLennan DH, Asahi M, Tupling AR (2003) The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann N Y Acad Sci 986:472–480

    Article  PubMed  CAS  Google Scholar 

  13. Inesi G, Kurzmack M, Coan CR, Lewis DE (1980) Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem 255:3025–3031

    PubMed  CAS  Google Scholar 

  14. Haghighi K, Pritchard T, Bossuyt J et al (2012) The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase. J Mol Cell Cardiol 52:773–782

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Schmidt AG, Zhai J, Carr AN et al (2002) Structural and functional implications of the phospholamban hinge domain: impaired SR Ca2+ uptake as a primary cause of heart failure. Cardiovasc Res 56:248–259

    Article  PubMed  CAS  Google Scholar 

  16. Frank K, Tilgmann C, Shannon TR et al (2000) Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport. Biochemistry 39:14176–14182

    Article  PubMed  CAS  Google Scholar 

  17. Zhai J, Schmidt AG, Hoit BD et al (2000) Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo. J Biol Chem 275:10538–10544

    Article  PubMed  CAS  Google Scholar 

  18. Harrer JM, Haghighi K, Kim HW et al (1997) Coordinate regulation of SR Ca(2+)-ATPase and phospholamban expression in developing murine heart. Am J Physiol 272:H57–H66

    PubMed  CAS  Google Scholar 

  19. Szymanska G, Grupp IL, Slack JP et al (1995) Alterations in sarcoplasmic reticulum calcium uptake, relaxation parameters and their responses to beta-adrenergic agonists in the developing rabbit heart. J Mol Cell Cardiol 27:1819–1829

    Article  PubMed  CAS  Google Scholar 

  20. Zhao W, Waggoner JR, Zhang Z-G et al (2009) The anti-apoptotic protein HAX-1 is a regulator of cardiac function. Proc Natl Acad Sci U S A 106:20776–20781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Solaro RJ, Briggs FN (1974) Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Circ Res 34:531–540

    Article  PubMed  CAS  Google Scholar 

  22. Chamberlain BK, Volpe P, Fleischer S (1984) Inhibition of calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. J Biol Chem 259:7547–7553

    PubMed  CAS  Google Scholar 

  23. Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42:298–305

    Article  PubMed  CAS  Google Scholar 

  24. Beil FU, von Chak D, Hasselbach W, Weber HH (1977) Competition between oxalate and phosphate during active calcium accumulation by sarcoplasmic vesicles. Z Naturforsch C 32:281–287

    PubMed  CAS  Google Scholar 

  25. De Meis L, Hasselbach W, Machado RD (1974) Characterization of calcium oxalate and calcium phosphate deposits in sarcoplasmic reticulum vesicles. J Cell Biol 62:505–509

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feher JJ, Lipford GB (1985) Calcium oxalate and calcium phosphate capacities of cardiac sarcoplasmic reticulum. Biochim Biophys Acta 818:373–385

    Article  PubMed  CAS  Google Scholar 

  27. Madeira VM (1984) State of translocated Ca2+ by sarcoplasmic reticulum inferred from kinetic analysis of calcium oxalate precipitation. Biochim Biophys Acta 769:284–290

    Article  PubMed  CAS  Google Scholar 

  28. Inesi G, de Meis L (1989) Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem 264:5929–5936

    PubMed  CAS  Google Scholar 

  29. MacLennan DH, Reithmeier RA, Shoshan V et al (1980) Ion pathways in proteins of the sarcoplasmic reticulum. Ann N Y Acad Sci 358:138–148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grants HL-26057 and HL-64018 to E. G. K. and AHA grant 13POST13860006 to P. A. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia G. Kranias Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bidwell, P.A., Kranias, E.G. (2016). Calcium Uptake in Crude Tissue Preparation. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics