Skip to main content
Log in

Evidence against H+−HCO 3 symport as the mechanism for HCO 3 transport in the cyanobacteriumAnabaena variabilis

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The rate of inorganic carbon uptake and its steadystate accumulation ratio (intracellular/extracellular concentration) was determined in the cyanobacteriumAnabaena variabilis as a function of extracellular pH. The free energy of protons (\(\Delta \overline \mu _{H^ - }\)) across the plasmalemma was calculated from determinations of membrane potential, and intracellular pH, as a function of the extracellular pH. While inward proton motive force decreased with increasing extracellular pH from 6.5 to 9.5, rate of HCO 3 influx and its accumulation ration increased. The latter is several times larger than would be expected should HCO 3 influx be driven by\(\Delta \overline \mu _{H^ + }\). It is concluded that HCO 3 transport in cyanobacteria is not driven by the proton motive force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badger, M.R., Kaplan, A., Berry, J.A. 1980. Internal inorganic carbon pool ofChlamydomonas reinhardtii: Evidence for a carbon dioxide concentrating mechanism.Plant Physiol. 66:407–413

    Google Scholar 

  2. Beardall, J., Raven, J.A. 1981. Transport of inorganic carbon and the CO2 concentrating mechanism inChlorella emersonii (Chlorophyceae).J. Phycol. 17:134–141

    Google Scholar 

  3. Coleman, J.R., Colman, B. 1981. Inorganic carbon accumulation and photosynthesis in a blue-green algae as a function of external pH.Plant Physiol. 67:917–921

    Google Scholar 

  4. Eddy, A.A. 1982. Mechanism of solute transport in selected eukaryotic microorganisms.Adv. Microbial Physiol. 23:1–78

    Google Scholar 

  5. Findenegg, G.R. 1979. Inorganic carbon transport in microalgae. I. Location of carbonic anhydrase and HCO 3 /OH exchange.Plant Sci. Lett. 17:101–108

    Google Scholar 

  6. Hawkesford, M.J., Reed, R.H., Rowell, P., Stewart, W.D.P. 1982. Nitrogenase activity and membrane electrogenesis in the cyanobacteriumPlectonema borganum.Eur. J. Biochem. 127:63–66

    Google Scholar 

  7. Heinz, E., Geck, P. 1978. The electrical potential difference as a driving force in Na+-linked cotransport of organic solutes.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1. pp. 13–30. Raven Press, New York

    Google Scholar 

  8. Humphreys, T.E. 1981. Sucrose-proton efflux from maize scutellum cells.Phytochemistry 20:2319–2323

    Google Scholar 

  9. Kaplan, A. 1981. The photosynthetic response to alkaline pH inAnabaena variabilis.Plant Physiol. 67:201–204

    Google Scholar 

  10. Kaplan, A., Badger, M.R., Berry, J.A. 1980. Photosynthesis and the intracellular inorganic carbon pool in the blue green algaAnabaena variabilis: Response to external CO2 concentration.Planta 149:219–226

    Google Scholar 

  11. Kaplan, A., Zenvirth, D., Reinhold, L., Berry, J.A. 1982. Involvement of a primary electrogenic pump in the mechanism for HCO 3 uptake by the cyanobacteriumAnabaena variabilis.Plant Physiol. 69:978–982

    Google Scholar 

  12. Lucas, W.J. 1983. Photosynthetic assimilation of exogenous HCO 3 by aquatic plants.Annu. Rev. Plant Physiol. 34:71–104

    Google Scholar 

  13. Marcus, Y., Zenvirth, D., Harel, E., Kaplan, A. 1982. Induction of HCO 3 transporting capability and high photosynthetic affinity to inorganic carbon by low concentration of CO2 inAnabaena variabilis.Plant Physiol. 69:1008–1012

    Google Scholar 

  14. Miller, A.G., Colman, B. 1980. Active transport and accumulation of bicarbonate by a unicellular cyanobacterium.J. Bacteriol. 143:1253–1259

    PubMed  Google Scholar 

  15. Padan, E., Zilberstein, D., Schuldiner, S. 1981. pH homeostasis in bacteria.Biochim. Biophys. Acta 650:151–166

    PubMed  Google Scholar 

  16. Raven, J.A. 1980. Nutrient transport in microalgae.Adv. Microbiol. Physiol. 21:47–226

    Google Scholar 

  17. Reed, R.H., Rowell, P., Stewart, W.D.P. 1980. Components of the proton electrochemical potential gradient inAnabaena variabilis.Trans. Biochem. Soc. 8:707–708

    Google Scholar 

  18. Schwab, W.G.W., Komor, E. 1978. A possible mechanistic role of the membrane potential in proton-sugar cotransport ofChlorella.FEBS Lett. 87:157–160

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenvirth, D., Volokita, M. & Kaplan, A. Evidence against H+−HCO 3 symport as the mechanism for HCO 3 transport in the cyanobacteriumAnabaena variabilis . J. Membrain Biol. 79, 271–274 (1984). https://doi.org/10.1007/BF01871065

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871065

Key Words

Navigation