Skip to main content
Log in

Structural responses to voltage-clamping in the toad urinary bladder

II. Granular cells and the natriferic action of vasopressin

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The natriferic action of vasopressin has been investigated with morphological studies of voltage-clamped toad urinary bladders. Granular cell swelling can be induced in the presence of isoosmotic solutions when the orientation of the transmural potential is reversed by voltage clamping (V.A. Bobrycki, J.W. Mills, A.D.C. Macknight & D.R. DiBona,J. Membrane Biol.,60:21, 1981) and results from an increased rate of sodium entry across the mucosal membrane; under these conditions the active transport mechanism at the basal-lateral membrane becomes rate-limiting. Vasopressin exacerbated the voltage-reversal-induced swelling of granular cells while other cell types were unaffected. Granular cell swelling appeared to be dependent upon sodium entry from the mucosal medium since it was completely prevented by amiloride. There was no evidence for an effect of vasopressin on tight junction permeability; voltage-reversal induced the same amount of junction blistering whether or not vasopressin was present. It is concluded that the predominant effect of vasopressin on transepithelial sodium transport is to increase the sodium conductance of the mucosal plasma membrane. As is the case with the hydroosmotic effect of the hormone, the natriferic action of vasopressin seems to be exerted primarily, if not entirely, on the granular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, J. 1977. Sodium pump stimulation by oxytocin and cyclic AMP in the isolated epithelium of the frog skin.Pfluegers Arch. 371:211

    Google Scholar 

  • Bobrycki, V.A., Mills, J.W., Macknight, A.D.C., DiBona, D.R. 1980. Structural responses to voltage-clamping in the toad urinary bladder. I. The principle role of granular cells in the active transport of sodium.J. Membrane Biol. 60:21

    Google Scholar 

  • Canessa, M., Labarca, P., DiBona, D.R., Leaf, A. 1978. Energetics of sodium transport in toad urrinary bladder.Proc. Natl. Acad. Sci. USA 75:4591

    Google Scholar 

  • Civan, M.M., DiBona, D.R. 1974. Pathways for movement of ions and water across toad urinary bladder. II. Site and mode of action of vasopressin.J. Membrane Biol. 19:195

    Google Scholar 

  • Civan, M.M., DiBona, D.R. 1978. Pathways for movement of ions and water across toad urinary bladder. III. Physiologic significance of the paracellular pathway.J. Membrane Biol. 38:359

    Google Scholar 

  • Civan, M.M., Frazier, H.S. 1968. The site of the stimulating action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1977. Does intracellular sodium modify membrane permeability to sodium ions?Nature 266:468

    Google Scholar 

  • Davis, W.L., Goodman, D.B.P., Martin, J.H., Matthews, J.L., Rasmussen, H. 1974. Vasopressin-induced changes in the toad urinary bladder epithelial surface.J. Cell Biol. 61:544

    Google Scholar 

  • DiBona, D.R. 1972. Passive intercellular pathway in amphibian epithelia.Nature New Biol. 238:179

    Google Scholar 

  • DiBona, D.R. 1979. Direct visualization of ADH-mediated transepithelial osmotic flow.In: Hormonal Control of Epithelial Transport. J. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche, editors. Vol. 85, pp. 195–206. INSERM, Paris

    Google Scholar 

  • DiBona, D.R., Civan, M.M. 1972. Clarification of the intercellular space phenomenon in toad urinary bladder.J. Membrane Biol. 7:267

    Google Scholar 

  • DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101

    Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79

    Google Scholar 

  • Dratwa, M., LeFurgey, A., Tisher, C.C. 1979. Effect of vasopressin and serosal hypertonicity on toad urinary bladder.Kidney Int. 16:695

    Google Scholar 

  • Erlij, D., Smith, M.W. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.J. Physiol. (London) 228:221

    Google Scholar 

  • Finn, A.L. 1968. Separate effects of sodium and vasopressin on the sodium pump in toad bladder.Am. J. Physiol. 215:849

    Google Scholar 

  • Grantham, J.J. 1970. Vasopressin: Effect of deformability of urinary surface of collecting duct cells.Science 168:1093

    Google Scholar 

  • Handler, J.S., Preston, A.S. 1976. Study of enzymes regulating vasopressin-stimulated cyclic AMP metabolism in separated mitochondria-rich and granular epithelial cells of toad urinary bladder.J. Membrane Biol. 26:43

    Google Scholar 

  • Helman, S.I., Nagel, W., Fisher, R.S. 1979. Effects of ouabain on active transepithelial sodium transport in frog skin.J. Gen. Physiol. 74:105

    Google Scholar 

  • Janacek, K., Rybova, R. 1970. Nonpolarized frog bladder preparations. The effects of oxytocin.Pfluegers Arch. 318:294

    Google Scholar 

  • Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 56:216

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41

    Google Scholar 

  • Lipton, P. 1972. Effect of changes in osmolarity on sodium transport across isolated toad bladder.Am. J. Physiol. 222:821

    Google Scholar 

  • Macknight, A.D.C., Leaf, A., Civan, M.M. 1971. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127

    Google Scholar 

  • Mills, J.W., Malick, L.E. 1978. Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin.J. Cell Biol. 77:598

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. II. Effects of different medium potassium concentrations on epithelial cell composition.J. Membrane Biol. 26:239

    Google Scholar 

  • Rossier, B.C. Geering, K., Kraehenbuhl, J.P. 1979. Hormonal control of sodium transport in the toad bladder epithelium: A search for the target cells to aldosterone and thyroid hormone.In: Hormonal Control of Epithelial Transport. J. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche, editors. Vol. 85, pp. 185–194. INSERM, Paris

    Google Scholar 

  • Scott, W.N., Sapirstein, V.S., Yoder, M.J. 1974. Partition of tissue functions in epithelia: Localization of enzymes in “mitochondria-rich” cells of toad urinary bladder.Science 184:797

    Google Scholar 

  • Spinelli, F., Grosso, A., de Sousa, R. C. 1975. The hydroosmotic effect of vasopressin: A scanning electron microscope study.J. Membrane Biol. 23:139

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon.J. Membrane Biol. 39:233

    Google Scholar 

  • Ussing, H.H. 1965. Relationship between osmotic reactions and active sodium transport in frog skin epithelium.Acta Physiol. Scand. 63:141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiBona, D.R., Sherman, B., Bobrycki, V.A. et al. Structural responses to voltage-clamping in the toad urinary bladder. J. Membrain Biol. 60, 35–44 (1981). https://doi.org/10.1007/BF01870830

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870830

Keywords

Navigation