Skip to main content
Log in

Current-voltage relations of the basolateral membrane in tight amphibian epithelia: Use of nystatin to depolarize the apical membrane

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Exposure of the mucosal side of toad(Bufo bufo) urinary bladder and frog(Rana ridibunda) skin to the polyene ionophore nystatin, resulted in stable preparations in which the apical resistance was negligible compared to the basolateral resistance. The preparations support passive K currents in both directions and an amiloride-insensitive Na current in the apicalserosal direction which is blocked by ouabain. The nystatintreated toad bladder was used to study the electrical properties of the basolateral membrane by means of current-voltage curves recorded transepithelially. The K current showed strong rectification at cellular potentials negative with respect to the interstitial space. The ouabain-sensitive current increased with membrane voltage at negative voltages but saturated above+20 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chapman, J.B., Johnson, E.A. 1978. The reversal potential of an electrogenic sodium pump. A method for determining the free energy of ATP breakdown?J. Gen. Physiol. 72:403–408

    Google Scholar 

  • Chase, H.S., Al-Awqati, Q. 1981. Regulation of the sodium permeability of the luminal border of toad bladder by intra-cellular sodium and calcium. Role of sodium-calcium exchange in the basolateral membrane.J. Gen. Physiol. 77:693–712

    Google Scholar 

  • Davis, C.W., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces baso-lateral membrane potassium conductance in tight epithelia.Science 216:525–527

    Google Scholar 

  • Eaton, D.C., Frace, A.M., Silverthorn, S.U. 1982. Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder.J. Membrane Biol. 67:219–229

    Google Scholar 

  • Erecin'ska, M., Wilson, D.F. 1982. Regulation of cellular energy metabolism(Topical Review).J. Membrane Biol. 70:1–14

    Google Scholar 

  • Fromter, E., Gebler, B. 1977. Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride.Pflugers Arch. 371:99–108

    Google Scholar 

  • Gebhardt., U., Lindemann, B. 1974. Speed of voltage threshold shift after step change of Na o and Ca o at the outer surface of frog skin.Pflugers Arch. 347:9–18

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1975. The sodium pump.Annu. Rev. Physiol. 37:13–55

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:30–60

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    Google Scholar 

  • Karlish, S.J.D., Lieb, W.R., Stien, W.D. 1982. Combined effects of ATP and phosphate on rubidium exchange mediated by Na−K-ATPase reconstituted into phospholipid vesicles.J. Physiol. (London) 328:333–350

    Google Scholar 

  • Kedem, O., Caplan, S.R. 1965. Degree of coupling and its relation to efficiency of energy conversion.Trans. Faraday Soc. 61:1897–1911

    Google Scholar 

  • Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427–440

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1982. Electrical properties of the rabbit urinary bladder assessed using gramicidin D.J. Membrane Biol. 67:45–53

    Google Scholar 

  • Lichtenstein, N.S., Leaf, A. 1965. Effect of amphotericin B. on the permeability of the toad bladder.J. Clin. Invest. 44:1328–1342

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A model tight epithelium.Physiol. Rev. 60:615–617

    Google Scholar 

  • Marmor, M.F. 1971. The independence of electrogenic sodium transport and membrane potential in a molluscan neurone.J. Physiol. (London) 218:599–608

    Google Scholar 

  • Meer, R., van der, Akerboom, T.P.M., Groen, A.K., Tager, J.M. 1978. Relationship between oxygen uptake of perfused rat-liver cells and the cytosolic phosphorylation state calculated from indicator metabolites and a redetermined equilibrium constant.Eur. J. Biochem. 84:421–428

    Google Scholar 

  • Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357

    Google Scholar 

  • Nielsen, R. 1977. Effect of the polyene antibiotic filipin on the permeability of inward- and outward-facing membrane of the isolated frog skin.Acta Physiol. Scand. 99:399–411

    Google Scholar 

  • Nielsen, R. 1979. Coupled transepithelial sodium and potassium transport across isolated frog skin: Effect of ouabain, amiloride and the polyene antibiotic filipin.J. Membrane Biol. 51:161–184

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Russell, J.M., Eaton, D.C., Brodwick, M.S. 1977. Effects of nystatin on membrane conductance and internal ion activitics inAplysia neurons.J. Membrane Biol. 37:137–156

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanism in sodium-transporting epithelia: Avoidance of extinction by “flush-through.”Am. J. Physiol. 241:F579-F590

    Google Scholar 

  • Sharp, G.W.G., Coggins, C.H., Lichtenstein, N.S., Leaf, A. 1966. Evidence for a mucosal effect of aldosterone on sodium transport in the toad bladder.J. Clin. Invest. 45:1640–1647

    Google Scholar 

  • Von Hedenstrom, M., Joffer, M. 1979. The effect of nystatin on active transport inRhodotorula glutinis (gracilis) is restricted to the plasma membrane.Biochim. Biophys. Acta 555:169–174

    Google Scholar 

  • Warncke, J., Slayman, C.L. 1980. Metabolic modulation of stoichiometry in a proton pump.Biochim. Biophys. Acta 591:224–233

    Google Scholar 

  • Williamson, J.R., Steinman, R., Coll, K., Rich, T.L. 1981. Energetics of citrulline synthesis by rat liver mitochondria.J. Biol. Chem. 256:7287–7297

    Google Scholar 

  • Wills, N.K. 1981. Antibiotics as tools for studying the electrical properties of tight epithelia.Fed. Proc. 40:2202–2205

    Google Scholar 

  • Wills, N.K., Eaton, D.C., Lewis, S.A., Ifshin, M.S. 1979. Current voltage relationship of the basolateral membrane of a tight epithelium.Biochim. Biophys. Acta 555:519–523

    Google Scholar 

  • Zeiske, W., Van Driessche, W. 1979. Saturable K+ pathway across the outer border of frog skin (Rana temporaria): Kinetics and inhibition by Cs+ and other cations.J. Membrane Biol. 47:77–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garty, H. Current-voltage relations of the basolateral membrane in tight amphibian epithelia: Use of nystatin to depolarize the apical membrane. J. Membrain Biol. 77, 213–222 (1984). https://doi.org/10.1007/BF01870570

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870570

Key Words

Navigation