Skip to main content
Log in

Ionic exchanges in isolated and open-circuited toad skin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Net influxes of Na and Cl and effluxes of K and H (J Na,J Cl,J K andJ H) and volume flowJ v across isolated open-circuited toad skins were measured using rotating chambers and a small volume of external solution, the ion fluxes being determined by chemical analysis of the external solution, in the range of 0.2 to 5.0mm external Na concentration. In this concentration range, with skin potential varying with (Na) e ,J Na is a linear function of the Na electrochemical potential difference across the skin, as expected on irreversible thermodynamic grounds. TheL Na coefficient calculated asΔJ Na/Δμ Na is equal to 5.5×10−12 mole2 joule−1 cm−2 min−1, which is similar to values obtained for the same species in the short-circuited state and in higher ranges of (Na) e . A positive correlation is observed betweenJ Na andJ K whenJ Na varied with (Na) e and also whenJ Na varies in randomly selected skins. Antidiuretic hormone stimulatesJ Na,J K andJ v in the range of 0.2 to 5.0mm (Na) e and lowers the Na concentration in the equivalent solution absorbed by the skin (calculated asJ Na/J v ). Substitution of external Cl by SO4 has no effect onJ Na,J K andJ H and also in the skin potential in the range of (Na) e studied. Substitution of external Na by K abolishesJ Cl and reverses the skin polarity, the external solution now being positive to the internal one. Na removal from the external solution also reducesJ K almost to zero.J H is significantly reduced in this condition; however, a basal secretion still persists with (Na) e equal to zero. The results of these experiments can be tentatively interpreted in terms of electrical coupling between ion fluxes, since only the procedures that result in alterations of skin potential are followed by changes in the rates of ion transport. The existence of other coupling mechanisms cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biber, T.U.L. 1971. Effects of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58:131

    Google Scholar 

  2. Biber, T.U.L., Chez, R.A., Curran, P.F. 1966. Na transport across frog skin at low external Na concentrations.J. Gen. Physiol. 49:1161

    Google Scholar 

  3. Biber, T.U.L., Cruz, L.J. 1973. Effect of antidiuretic hormone on sodium uptake across outer surface of frog skin.Am. J. Physiol. 225:912

    Google Scholar 

  4. Biber, T.U.L., Cruz, L.J., Curran, P.F. 1972. Sodium influx at the outer surface of frog skin. Evaluation of different extracellular markers.J. Membrane Biol. 7:365

    Google Scholar 

  5. Biber, T.U.L., Sanders, M.L. 1973. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin.J. Gen. Physiol. 61:529

    Google Scholar 

  6. Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    Google Scholar 

  7. Danisi, G., Lacaz Vieira, F. 1974. Nonequilibrium thermodynamic analysis of the coupling between active sodium transport and oxygen consumption.J. Gen. Physiol. 64:372

    Google Scholar 

  8. Emilio, M.G., Machado, M.M., Menano, H.P. 1970. The production of a hydrogen ion gradient across the isolated frog skin. Quantitative aspects and the effect of acetazolamide.Biochim. Biophys. Acta 203:394

    Google Scholar 

  9. Emilio, M.G., Menano, H.P. 1975. The excretion of hydrogen ion by the isolated amphibian skin: Effects of antidiuretic hormone and amiloride.Biochim. Biophys. Acta 382:344

    Google Scholar 

  10. Engbaek, L., Hoshiko, T. 1957. Electrical potential gradients through frog skin.Acta Physiol. Scand. 39:348

    Google Scholar 

  11. Erlij, D. 1971. Salt transport across isolated frog skin.Phil. Trans. R. Soc. London (Biol.) 262:153

    Google Scholar 

  12. Essig, A., Caplan, S.R. 1968. Energetics of active transport processes.Biophys. J. 8:1434

    Google Scholar 

  13. Fleming, W.R. 1957. On the role of hydrogen ion and potassium ion in the active transport of sodium across the isolated frog skin.J. Cell. Physiol. 49:129

    Google Scholar 

  14. Friedman, R.T., LaPrade, N.S., Aiyawar, R.M., Huf, E.G. 1967. Chemical basis for the (H+) gradient across frog skin.Am. J. Physiol. 212:962

    Google Scholar 

  15. Carcia-Romeu, F. 1971. Anionic and cationic exchange mechanisms in the skin of anurans, with special reference toLeptodactylidae in vivo.Phil. Trans. R. Soc. London (Biol.) 262:163

    Google Scholar 

  16. Garcia-Romeu, F., Ehrenfeld, J. 1975. Chloride transport through the nonshortcircuited isolated skin ofRana esculenta.Am. J. Physiol. 228:845

    Google Scholar 

  17. Garcia-Romeu, F., Salibian, A., Pezzani-Hernandez, S. 1969. The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium of the Chilean frogCalyptocephalella gayi (Dum. et Bibr., 1841).J. Gen. Physiol. 53:816

    Google Scholar 

  18. Gehring, K., Dörge, A., Nagel, W., Thurau, K. 1972. Analysis and localisation of electrolytes in frog skin epithelial cells by electron microprobe with an energy dispersive system.J. Cell Biol. 55:82a

    Google Scholar 

  19. Huf, E.G., Parrish, J., Weatherford, C. 1951. Active salt and water uptake by isolated frog skin.Am. J. Physiol. 164:137

    Google Scholar 

  20. Huf, E.G., Wills, J. 1953. The relationship of sodium uptake, potassium rejection and skin potential in isolated frog skin.J. Gen. Physiol. 36:473

    Google Scholar 

  21. Huf, E.G., Wills, J., Cooley, M.J. 1952. The significance of the anion in active salt uptake by isolated frog skin.Pfluegers Arch. 255:16

    Google Scholar 

  22. Jorgensen, C.G., Levi, H., Zerahn, K. 1954. On active uptake of sodium and chloride ions in anurans.Acta Physiol. Scand. 30:178

    Google Scholar 

  23. Katchalsky, A., Curran, P.F. 1965. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  24. Kirschner, L.B., Greenwald, L., Kerstetter, T.H. 1973. Effect of amiloride on sodium transport across body surfaces of freshwater animals.Am. J. Physiol. 224:832

    Google Scholar 

  25. Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    Google Scholar 

  26. Kristensen, P. 1972. Chloride transport across isolated frog skin.Acta Physiol. Scand. 83:338

    Google Scholar 

  27. Krogh, A. 1937. Osmotic regulation in the frog (R. esculenta) by active absorption of chloride ions.Skand. Arch. Physiol. 76:60

    Google Scholar 

  28. Krogh, A. 1938. The active absorption of ions in some freshwater animals.Z. Vergl. Physiol. 25:335

    Google Scholar 

  29. Linderholm, H. 1954. On the behaviour of the “sodium pump” in frog skin at various concentrations of Na ions in the solution on the epithelial side.Acta Physiol. Scand. 31:36

    Google Scholar 

  30. MacInnes, D.A. 1939. The principles of Electrochemistry, p. 232. Dover Publications, Inc., New York

    Google Scholar 

  31. Mandel, L.J., Curran, P.F. 1973. Response of the frog skin to steady-state voltage clamping. II. The active pathway.J. Gen. Physiol. 62:1

    Google Scholar 

  32. Martin, D.W., Curran, P.F. 1966. Reversed potentials in isolated frog skin. II. Active transport of chloride.J. Cell. Physiol. 67:367

    Google Scholar 

  33. McAfee, R.D. 1972. Survival ofRana pipiens in deionized water.Science 178:183

    Google Scholar 

  34. Nielsen, R. 1971. Effect of Amphotericin B on the frog skin in vitro. Evidence for outward active potassium transport across the epithelium.Acta Physiol. Scand. 83:106

    Google Scholar 

  35. Rosenberg, T. 1954. The concept and definition of active transport.In: Active Transport and Secretion. R. Brown and J.F. Danielli, editors, p. 27. Academic Press, Inc., New York

    Google Scholar 

  36. Rotunno, C.A., Vilallonga, F.A., Fernandez, M., Cereijido, M. 1970. The penetration of sodium into the epithelium of the frog skin.J. Gen. Physiol. 55:716

    Google Scholar 

  37. Salibian, A., Pezzani-Hernandez, S., Garcia-Romeu, F. 1968. In vivo ionic exchange through the skin of the South American frog,Leptodactylus ocellatus.Comp. Biochem. Physiol. 25:311

    Google Scholar 

  38. Steinbach, H.B. 1966. The sodium and potassium exchange between intact frogs and their environment.J. Gen. Physiol. 49:1111

    Google Scholar 

  39. Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  40. Varanda, W.A. 1975. Alterações de transporte na pele isolada do sapo associadas à substituição do sódio na solução interna por cátions monovalentes. Thesis, University of São Paulo, Brazil

    Google Scholar 

  41. Vieira, F.L., Caplan, S.R., Essig, A. 1972. Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption.J. Gen. Physiol. 59:77

    Google Scholar 

  42. Whittembury, G. 1964. Electrical potential profile of the toad skin epithelium.J. Gen. Physiol. 47:795

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procopio, J., Vieira, F.L. Ionic exchanges in isolated and open-circuited toad skin. J. Membrain Biol. 35, 219–237 (1977). https://doi.org/10.1007/BF01869951

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869951

Keywords

Navigation