Skip to main content
Log in

Pigment containing lipid vesicles

III. Role of chlorophylla as sensor for aggregational states of lecithin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

It was shown previously (Walz, 1976) that chlorophylla incorporated into the membrane of lecithin vesicles is a probe which detects the aggregational state of the lipids. This phenomenon is interpreted in terms of a solvatochromism, i.e., the effect of various solvents on the absorption spectrum of the solute. The sensor characteristics can be expressed by a set of solvatochromic coefficients, which are pertinent to the electronic transitions occuring in chlorophylla on excitation with light, and by means of the absorption bands associated with these transitions. An unambiguous resolution of spectra into absorption bands is not yet practicable, but at least part of the bands can be approximated by, Gaussian components which then allows us to estimate the solvatochromic coefficients From these data and based on the currently available theoretical and experimental information about, solvatochromism, it is concluded that the chromophore, i.e., the porphyrin ring of chlorophylla, is located adjacent to the glycerol-ester moieties of the lecithin molecules in the membrane, and that the sensor ability relies on different orientations of the chromophore for lecithin in different states of aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bär, F., Lang, H., Schnabel, E., Kuhn, H. 1961. Richtung der Übergansmomente der Absorptionsbanden von Phthalocyaninen aus Fluoreszenzpolarisationsmessungen.Z. Elektrochem. 65:346

    Google Scholar 

  • Bauer, N., Fajans, K. 1949. Refractometry.In: Physical Methods of Organic Chemistry. A. Weissberger, editor. Vol. I (second ed.), p. 1141. Interscience, New York

    Google Scholar 

  • Brody, S. S., Broyde, S. B. 1963. A low-temperature emission band from diluted solutions of pure chlorophylla.Nature (London) 199:1098

    Article  Google Scholar 

  • Cherry, R. J., Hsu, K., Chapman, D. 1972. Structure and reflection spectra of chlorophyll-lipid membranes.Biochim. Biophys. Acta 288:12

    Article  PubMed  CAS  Google Scholar 

  • Colbow, K. 1973. Chlorophyll in phospholipid vesicles.Biochim. Biophys. Acta 3814

    Google Scholar 

  • Cotton, T. M., Trifunac, A. D., Ballschmiter, K., Katz, J. J. 1974., State of chlorophylla in vitro and in vivo from electronic transition spectra, and the nature of antenna chlorophyll.Biochim. Biophys. Acta 368:181

    Article  PubMed  CAS  Google Scholar 

  • Freed, S., Sancier, K. M. 1951. Absorption spectra of chlorophylls in solutions at low temperatures-equilibria between isomers.Science 114:275

    Article  PubMed  CAS  Google Scholar 

  • Goedheer, J. C. 1966. Visible absorption and fluorescence of chlorophyll and its aggregates in solution.In: The Chlorophylls. L. P. Vernon and G. R. Seely, editors. p. 174. Academic Press, New York

    Google Scholar 

  • Gouterman, M., Stryer, L. 1962. Fluorescence polarization of some porphyrins.J. Chem. Phys. 37:2260

    Article  CAS  Google Scholar 

  • Grell, E., Funck, Th., Eggers, F. 1975. Structure and dynamic properties of ion specific antibiotics.In: Membranes—A Series of Advances. G. Eisenman, editor Vol. 3, p. 1. Marcel Dekker, New York and Basel

    Google Scholar 

  • Griffith, O. H., Dehlinger, P. J., Van S. P. 1974. Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes).J. Membrane Biol. 15:159

    Article  CAS  Google Scholar 

  • Hauser, H. 1975. Water phospholipid interactions.In: Recent Advances in Food Science. Vol. 5. Academic Press, New York and London(in press)

    Google Scholar 

  • Hauser, H., Finer, E. G., Chapman, D. 1970. Nuclear magnetic resonance studies of the polypeptide alamethicin and its interaction with phospholipids.J. Mol. Biol. 53:419

    Article  PubMed  CAS  Google Scholar 

  • Hoff, A. J. 1974. The orientation of chlorophyll and bacteriochlorophyll molecules in an oriented, lecithin multilayer.Photochem. Photobiol. 19:51

    Article  CAS  Google Scholar 

  • Jost, P. C., Griffith, O. H., Capaldi, R. A., Vanderkooi, G. 1973. Evidence for boundary lipid in membranes.Proc. Nat. Acad. Sci. USA 70:480

    Article  PubMed  CAS  Google Scholar 

  • Karan, J., Brody, S. S. 1974. Chlorophyll,a and cytochromec at a heptane-water interface.Z. Naturforsch. 29c:506

    CAS  Google Scholar 

  • Katz, J. J., Norris, J. R. 1973. Chlorophyll and light energy transduction in photosynthesis.In: Current Topics in Bioenergetics. D. R. Sanadi and L. Packer, editors. Vol. 5, p. 41. Academic Press, New York and London

    Google Scholar 

  • Labhart, H. 1967. Electrochromism.Adv. Chem. Phyisc.,13:179

    Article  CAS  Google Scholar 

  • Lee, A. G. 1975. Segregation of chlorophylla incorporated into lipid bilayers.Biochemistry 14:4397

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A., Warren, G. B. 1974. Clusters in lipid bilayer and the interpretation of thermal effects in biological membranes.Biochemistry 13:3699

    Article  PubMed  CAS  Google Scholar 

  • Lehoczki, E. 1975. New chlorophyll-b forms in a chlorophyll-detergent photosynthetic model system.Biochim. Biophys. Acta 408:223

    Article  PubMed  CAS  Google Scholar 

  • Liptay, W 1965. Die Lösungsmittelabhängigkeit der Wellenzahl von Elektronenbanden und die chemisch-physikalischen Grundlagen.Z. Naturforsch 20 a:1441

    Google Scholar 

  • Liptay, W. 1966. Die Lösungsmittelabhängigkeit der Intensität von Elektronenbanden. I. Theorie.Z. Naturforsch. 21 a:1605

    CAS  Google Scholar 

  • Liptay, W. 1969. Elektrochromie-Solvatochromie.Angew. Chem. 81:195

    Article  Google Scholar 

  • Liptay, W., Schlosser, H.-J., Dumbacher, B., Hünig, S. 1968. Die Beeinflussung der optischen Absorption von Molekülen durch ein elektrisches Feld. VIII. Die Lösungsmittelabhängigkeit der Lage und Intensität von Elektronenbanden einiger Farbstoffe.Z. Naturforsch. 23 a:1613

    CAS  Google Scholar 

  • Liptay, W., Walz, G. 1971. Die Beeinflussung der optischen Absorption von Molekülen durch ein elektrisches Feld. X. Erweiterung der Theorie unter Berücksichtigung der Fluktuation der effektiven elektrischen Felder.Z. Naturforsch. 26a:2007

    Google Scholar 

  • Liptay, W., Walz, G., Baumann, W., Schlosser, H.-J., Deckers, H., Detzer, N. 1971. Die Beeinflussung der optischen Absorption von Molekülen durch ein elektrisches Feld. XI. Elektrische Polarisierbarkeiten einiger organischer Moleküle im Grundzustand und im ersten Singulett-Anregungszustand.Z. Naturforsch. 26a:2020

    Google Scholar 

  • Nicholls, P., West, J., Bangham, A. D. 1974. Chlorophyllb containing liposomes: Effect of thermal transitions on catalytic and spectral properties.Biochim. Biophys. Acta 363:190

    Article  PubMed  CAS  Google Scholar 

  • Reich, R., Schmidt, S. 1972. Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschichten. I. Theorie.Z. Elektrochem. 76:589

    CAS  Google Scholar 

  • Ritt, E., Walz, D. 1976. Pigment containing lipid vesicles. I. Preparation and chracterization of chlorophylla-lecithin vesicles.J. Membrane Biol. 27:41

    Article  CAS  Google Scholar 

  • Schmidt, S., Reich, R. 1972. Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschichten. II. Messung an Rhodamin B. III. Elektrochromie eines Carotinoids (Lutein).Z. Elektrochem. 76:599 and 1202

    CAS  Google Scholar 

  • Seelig, J., Limacher, H., Bader, P. 1972. Molecular architecture of liquid crystalline bilayers.J. Am. Chem. Soc. 94:6364

    Article  CAS  Google Scholar 

  • Seely, G. R. 1965. Calculation of equilibrium constants for the solvation of chlorophyll from spectral data.Spectrochim. Acta 21:1847

    Article  CAS  Google Scholar 

  • Seely, G. R., Jensen, R. G. 1965. Effect of solvent on the spectrum of chlorophyll.Spectrochim. Acta 21:1835

    Article  CAS  Google Scholar 

  • Smyth, C. P. 1949. Determination of dipole moments.In: Physical Methods of Organic Chemistry. A. Weissberger, editor. Vol. I (second ed.), p. 611. Interscience, New York

    Google Scholar 

  • Steinemann, A., Stark, G., Läuger, P. 1972. Orientation of the porphyrin ring in artificial chlorophyll membranes.J. Membrane Biol. 9:177

    Article  CAS  Google Scholar 

  • Walz, D. 1976. Pigment containing lipid vesicles. II. Interaction of valinomycin with lecithin as sensed by chlorophylla.J. Membrane Biol. 27:55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walz, D. Pigment containing lipid vesicles. J. Membrain Biol. 31, 31–64 (1977). https://doi.org/10.1007/BF01869398

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869398

Keywords

Navigation