Skip to main content
Log in

Aerolysin, a hemolysin fromAeromonas hydrophila, forms voltage-gated channels in planar lipid bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The cytolytic toxin aerolysin was found to form ion channels which displayed slight anion selectivity in planar lipid bilayers. In voltage-clamp experiments the ion current flowing through the channels was homogeneous indicating a defined conformation and a uniform size. The channels remained open between −70 to +70 mV, but outside this range they underwent voltage-dependent inactivation which was observed as open-closed fluctuations at the single-channel level. Zinc ions not only prevented the formation of channels by inhibiting oligomerization of monomeric aerolysin but they also induced a closure of preformed channels in a voltage-dependent fashion. The results of a Hill plot indicated that 2–3 zinc ions bound to a site within the channel lumen. Proaerolysin, and a mutant of aerolysin in which histidine 132 was replaced by an asparagine, were both unable to oligomerize and neither could form channels. This is evidence that oligomerization is a necessary step in channel formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreoli, T.E., Troutman, S.L. 1971. An analysis of unstirred layers in series with “tight” and “porous” lipid blayer membranes.J. Gen. Physiol. 57:464–478

    Google Scholar 

  2. Arbuthnott, J.P., Freer, J.H., Billcliffe, B. 1973. Lipid-induced polymerization of staphylococcal α-toxin.J. Gen. Microbiol. 75:309–319

    PubMed  Google Scholar 

  3. Bashford, C.L., Alder, G.M., Menestrina, G., Micklem, K.J., Murphy, J.J., Pasternak, C.A. 1986. Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agents.J. Biol. Chem. 261:9300–9308

    PubMed  Google Scholar 

  4. Benz, R., Bauer, K. 1988. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria.Eur. J. Biochem. 176:1–19

    PubMed  Google Scholar 

  5. Bhakdi, S., Füssle, R., Tranum-Jensen, J. 1981. Staphylococcal α-toxin: Oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles.Proc. Natl. Acad. Sci. USA 78:5475–5479

    PubMed  Google Scholar 

  6. Bhakdi, S., Tranum-Jensen, J. 1987. Damage to mammalian cells by proteins that form transmembrane pores.Rev. Physiol. Biochem. Pharmacol. 107:147–223

    PubMed  Google Scholar 

  7. Buckley, J.T., Howard, S.P. 1988. Aerolysin fromAeromonas hydrophila.Methods Enzymol. 165:193–199

    PubMed  Google Scholar 

  8. Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50:1765–1784

    Article  Google Scholar 

  9. Catterall, W.A. 1988. Structure and function of voltage-sensitive ion channels.Science 242:50–61

    PubMed  Google Scholar 

  10. Chakraborty, T., Huhle, B., Bergbauer, H., Goebel, W. 1986. Cloning, expression, and mapping of theAeromonas hydrophila aerolysin gene determinant inEscherichia coli K-12.J. Bacteriol. 167:368–374

    PubMed  Google Scholar 

  11. Collarini, M., Amblard, G., Lazdunski, C., Pattus, F. 1987. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers.Eur. Biophys. J. 14:147–153

    PubMed  Google Scholar 

  12. Coronado, R., Miller, C. 1979. Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmatic reticulum.Nature (London) 280:807–810

    Google Scholar 

  13. Daily, O.P., Joseph, S.W., Coolbaugh, J.C., Walker, R.I., Merrell, B.R., Rollins, D.M., Seidler, R.J., Colwell, R.R., Lissner, C.R. 1981. Association ofAeromonas sobria with human infection.J. Clin. Microbiol. 13:769–777

    PubMed  Google Scholar 

  14. Forte, M., Gay, H.R., Manella, C.A. 1987. Molecular genetics of the VDAC ion channel: Structural model and sequence analysis.J. Bioenerg. Biomembr. 19:341–350

    PubMed  Google Scholar 

  15. Freer, J.H., Arbuthnott, J.P., Bernheimer, A.W. 1968. Interaction of staphyloccal α-toxin with artificial and natural membranes.J. Bacteriol. 95:1153–1168

    PubMed  Google Scholar 

  16. Freij, B.J. 1984.Aeromonas: Biology of the organism and diseases of children.Pediatr. Infect. Dis. 3:164–175

    PubMed  Google Scholar 

  17. Füssle, R., Bhakdi, S., Sziegoleit, A., Tranum-Jensen, J., Kranz, T., Wellensiek, H.J. 1981. On the mechanism of membrane damage byStaphylococcus aureus α-toxin.J. Cell Biol. 91:83–94

    PubMed  Google Scholar 

  18. Garland, W.J., Buckley, J.T. 1988. The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregation is stimulated by human glycophorin.Infect. Immunol. 56:1249–1253

    Google Scholar 

  19. Gracey, M., Burke, V., Robinsin, J. 1982.Aeromonas associated gastroenteritis.Lancet ii:1304–1306

    Google Scholar 

  20. Grant, G.S., Kehoe, M. 1984. Primary sequence of the alpha toxin gene fromStaphylococcus aureus Wood 46.Infect. Immunol. 46:615–618

    Google Scholar 

  21. Howard, S.P., Buckley, J.T. 1982. Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein.Biochemistry 21:1662–1667

    PubMed  Google Scholar 

  22. Howard, S.P., Buckely, J.T. 1985a. Activation of the holeforming toxin aerolysin by extracellular processing.J. Bacteriol. 163:336–340

    PubMed  Google Scholar 

  23. Howard, S.P., Buckley, J.T. 1985b. Protein export by a gram-negative bacterium. Production of aerolysin byAeromonas hydrophilia.J. Bacteriol. 161:1118–1124

    PubMed  Google Scholar 

  24. Howard, S.P., Buckley, J.T. 1986. Molecular cloning and expression inEscherichia coli of the structural gene for the hemolytic toxin aerolysin fromAeromonas hydrophila.Mol. Gen. Genet. 204:289–295

    PubMed  Google Scholar 

  25. Howard, S.P., Garland, W.J., Green, M.J., Buckley, J.T. 1987. Nucleotide sequence of the gene for the hole-forming toxin aerolysin ofAeromonas hydrophila.J. Bacteriol. 169:2869–2871

    PubMed  Google Scholar 

  26. Janda, J.M., Bottone, E.J., Sinner, C.V., Calcaterra, D. 1983. Phenotypic markers associated with gastrointestinalAeromonas hydrophilia isolates from symptomatic children.J. Clin. Microbiol. 17:588–591

    PubMed  Google Scholar 

  27. Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV. Reconstitution of particles catalyzing32Pi-adenosine triphosphate exchange.J. Biol. Chem. 246:5477–5487

    Google Scholar 

  28. Kleffel, B., Garavito, R.M., Baumeister, W., Rosenbusch, J.P. 1985. Secondary structure of a channel-forming protein. Porin fromE. coli outer membranes.EMBO J. 4:1589–1592

    PubMed  Google Scholar 

  29. Menestrina, G. 1986. Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations.J. Membrane Biol. 90:177–190

    Google Scholar 

  30. Menestrina, G., Mackman, N., Holland, I.B., Bhakdi, S. 1987.Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes.Biochim. Biophys. Acta 905:109–117

    PubMed  Google Scholar 

  31. Paul, C., Rosenbusch, J.P. 1985. Folding patterns of porin and bacteriorhodopsin.EMBO J. 4:1593–1597

    PubMed  Google Scholar 

  32. Rosenbusch, J.P. 1988. Secondary and tertiary structure of membrane proteins.In: Bacterial Protein Toxins, Zentralblatt für Bakteriologie Suppl. 17. F.J. Fehrenbach, J.E. Alouf and P. Falmagne, editors. pp. 259–266. Gustav Fischer Verlag, Stuttgart-New York

    Google Scholar 

  33. Schein, S.J., Colombini, M., Finkelstein, A. 1976. Reconstitution in planar lipid bilayers of a voltage-dependent anionselective channel obtained fromParamecium mitochondria.J. Membrane Biol. 30:99–120

    Google Scholar 

  34. Schein, S.J., Kagan, B., Finkelstein, A. 1978. Colicin K acts by forming voltage-dependent channels in phospholipid planar bilayer membranes.Nature (London) 276:159–163

    Google Scholar 

  35. Schindler, H., Feher, G. 1976. Branched bimolecular lipid membranes.Biophys. J. 16:1109–1113

    PubMed  Google Scholar 

  36. Schindler, H., Rosenbusch, J.P. 1981. Matrix protein fromEscherichia coli outer membranes forms voltage-controlled channels in lipid bilayers.Proc. Natl. Acad. Sci. USA 75:3751–3755

    Google Scholar 

  37. Tobkes, N., Wallace, B.A., Bayley, H. 1985. Secondary structure and assembly mechanism of an oligometric channel protein.Biochemistry 24:1915–1920

    PubMed  Google Scholar 

  38. Unwin, P.N.T., Ennis, P.D. 1984. Two configurations of a channel-forming membrane protein.Nature (London) 307:609–613

    Article  Google Scholar 

  39. Wong, K., Green, M., Buckley, J.T. 1989. Extracellular secretion of cloned aerolysin and phospholipase byAeromonas salmonicida.J. Bacteriol. 171:2523–2527

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmsen, H.U., Pattus, F. & Buckley, J.T. Aerolysin, a hemolysin fromAeromonas hydrophila, forms voltage-gated channels in planar lipid bilayers. J. Membrain Biol. 115, 71–81 (1990). https://doi.org/10.1007/BF01869107

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869107

Key Words

Navigation