The Journal of Membrane Biology

, Volume 81, Issue 2, pp 159–170 | Cite as

Histidyl residues at the active site of the Na/succinate cotransporter in rabbit renal brush borders

  • N. Bindslev
  • E. M. Wright
Articles

Summary

Mono-, dicarboxylic acid-, andd-glucose transport were measured in brush border vesicles from renal cortex after treatment with reagents known to modify terminal amino, lysyl, ɛ-amino, guanidino, serine/threonine, histidyl, tyrosyl, tryptophanyl and carboxylic residues. All three sodium-coupled cotransport systems proved to possess sulfhydryl (and maybe tryptophanyl sulfhydryl, disulfide, thioether and tyrosyl) residues but not at the substrate site or at the allosteric cavity for the Na coion. Histidyl groups seem to be located in the active site of the dicarboxylic transporter in that the simultaneous presence of Na and succinate protects the transporter against the histidyl specific reagent diethylpyrocarbonate. Lithium, which specifically competes for sodium sites in the dicarboxylic acid transporter, substantially blocked the protective effect of Na and succinate. Hydroxylamine specifically reversed the covalent binding of diethylpyrocarbonate to the succinate binding site. The pH dependence of the Na/succinate cotransport is consistent with an involvement of histidyl and sulfhydryl residues. We conclude that a histidyl residue is at, or is close to, the active site of the dicarboxylate transporter in renal brush border membranes.

Key Words

renal brush border membranes carboxylic acid transport glucose transport Na-coupled cotransport histidyl, sulfhydryl, tyrosyl and tryptophanyl residues 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliel, P.M., Mulet, C., Lederer, F. 1980. Bromopyruvate as an affinity label for baker's yeast flavocytochrome b2. Stoichiometry of incorporation and localization on the peptide chain.Eur. J. Biochem. 105:343–351Google Scholar
  2. Avaeva, S.M., Krasnova, V.I. 1975. Reactions of diethyl pyrocarbonate with imidazole and with histidine derivatives.Sov. J. Bioorg. Chem. 1:1151–1155Google Scholar
  3. Belleau, B., DiTullio, V., Godin, D. 1969. The mechanism of irreversible adrenergic blockade by N-carbethoxydihydroquinolines—Model studies with typical serine hydrolases.Biochem. Pharmacol. 18:1039–1044Google Scholar
  4. Berger, S.L. 1975. Diethyl pyrocarbonate: An examination of its properties in buffered solutions with a new assay technique.Anal. Biochem. 67:428–437Google Scholar
  5. Birkett, D.J., Price, N.C., Radda, G.K., Salomon, A.G. 1970. The reactivity of SH groups with a flourogenic reagent.FEBS Lett. 6:346–348Google Scholar
  6. Bode, F., Baumann, K., Frasch, W., Kinne, R. 1970. Die bindung von Phlorrhizin an die burstensaum fraktion der rattenniere.Pfluegers Arch. 315:53–65Google Scholar
  7. Burstein, Y., Walsh, K.A., Neurath, H. 1974. Evidence of an essential histidine residue in thermolysin.Biochemistry 13:205–210Google Scholar
  8. Cantley, L.C., Gelles, J., Josephson, L. 1978. Reaction of (Na−K)ATPase with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole: Evidence for an essential tyrosine at the active site.Biochemistry 17:418–425Google Scholar
  9. Chang, G., Hsu, R.Y. 1973. The substrate analog bromopyruvate as a substrate, an inhibitor and an alkylating agent of malic enzyme of pigeon liver.Biochem. Biophys. Res. Commun. 55:580–587Google Scholar
  10. Cohen, L.A. 1968. Group-specific reagents in protein chemistry.Annu. Rev. Biochem. 37:695–726Google Scholar
  11. Cousineau, J., Meighen, E. 1976. Chemical modification of bacterial luciferase with ethoxyformic anhydride: Evidence for an essential histidyl residue.Biochemistry 15:4992–5000Google Scholar
  12. Fontana, A. 1972. Modification of tryptophan with BNPS-Skatole 2-(2-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine).Methods Enzymol. 25:419–423Google Scholar
  13. Garrison, C.K., Himes, R.H. 1975. The reaction between diethylpyrocarbonate and sulfhydryl groups in carboxylate buffers.Biochem. Biophys. Res. Commun. 67:1251–1255Google Scholar
  14. Gerhart, J.C., Schachmann, H.K. 1968. Allosteric interaction in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands.Biochemistry 2:538–552Google Scholar
  15. Hartman, F.C. 1977. Haloketones as affinity labelling reagents.Methods Enzymol. 47:130–153Google Scholar
  16. Hayes, M.R., McGivan, J. 1983. Comparison of the effects of certain thiol reagents on alanine transport in plasma membrane vesicles from rat liver and their use in identifying the alanine carrier.Biochem. J. 214:489–495Google Scholar
  17. Jennings, M.L., Adams-Lackey, M. 1982. A rabbit erythrocyte membrane protein associated with L-lactate transport.J. Biol. Chem. 257:12866–12871Google Scholar
  18. Kippen, I., Hirayama, B., Klinenberg, J.R., Wright, E.M. 1979. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border.Proc. Natl. Acad. Sci. USA 76:3397–3400Google Scholar
  19. Klip, A., Grinstein, S., Semenza, G. 1979. Distribution of sulfhydryl groups in intestinal brush border membranes: Localization of side-chains essential for glucose transport and phlorizin binding.Biochim. Biophys. Acta 558:233–245Google Scholar
  20. Knowlers, J.R. 1976. The intrinsic pKa-values of functional groups in enzymes: Improper deductions from the pH-dependence of steady-state parameters.CRC Crit. Rev. Biochem. 4:165–173Google Scholar
  21. Kragh-Hansen, U., Jørgensen, K.E., Sheikh, I.M. 1982. The use of a potential sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Uptake ofl-malate andd-malate by luminal-membrane vesicles.Biochem. J. 208:369–376Google Scholar
  22. Liao, T., Wadano, A. 1979. Inactivation of DNase by 2-nitro-5-thiocyanobenzoic acid. II. Serine and threonine are sites of reaction in the DNase molecule.J. Biol. Chem. 254:9602–9607Google Scholar
  23. Lin, J.T., Stroh, A., Kinne, R. 1982. Renal sodiumd-glucose cotransport system. Involvement of tyrosine residues in sodium-transporter interaction.Biochim. Biophys. Acta 692:210–217Google Scholar
  24. Little, C. 1977. The histidine residues of phospholipase C fromBacillus cereus.Biochem. J. 167:399–404Google Scholar
  25. Melchior, W.B., Fahrney, D. 1970. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with α-chymotrypsin, pepsin and pancreatic ribonuclease at pH 4.Biochemistry 2:251–258Google Scholar
  26. Meloche, H.P. 1970. Reaction of the substrate analog bromopyruvate with two active site conformers of 2-keto-3-deoxy-6 phosphogluconic aldolase.Biochemistry 9:5050–5055Google Scholar
  27. Miles, E.W. 1977. Modification of histidyl residues in proteins by diethoxypyrocarbonate.Methods Enzymol. 47:431–442Google Scholar
  28. Miles, E.W., Kumagai, H. 1974. Modification of essential histidyl residues of the β2 subunit of tryptophan synthetase by photooxidation in the presence of pyridoxal 5′-phosphate andl-serine and by diethylpyrocarbonate.J. Biol. Chem. 249:2843–2851Google Scholar
  29. Mircheff, A.K., Kippen, I., Hirayama, B., Wright, E.M. 1982. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.J. Membrane Biol. 64:113–122Google Scholar
  30. Morrison, M., Bayse, G.S. 1970. Catalysis of iodination by lactoperoxidase.Biochemistry 9:2995–3000Google Scholar
  31. Mühlrad, A., Hegyi, G., Toth, G. 1967. Effect of diethylpyrocarbonate on proteins. I. Reaction of diethylpyrocarbonate with amino acids.Acta. Biochim. Biophys. Acad. Sci. Hung. 2:19–29Google Scholar
  32. Muren, J.F., Weissman, A. 1971. Depressant 1,2-dihydroquinolines and related derivatives.J. Med. Chem. 14:49–53Google Scholar
  33. Nord, E.P., Wright, S.H., Kippen, I., Wright, E.M. 1982. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles.Am. J. Physiol. 243:F456-F462Google Scholar
  34. Nord, E.P., Wright, S.H., Kippen, I., Wright, E.M. 1983. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes.J. Membrane Biol. 72:213–221Google Scholar
  35. Peerce, B.E., Wright, E.M. 1984. Conformation changes in the intestinal brush border Na-glucose cotransporter labeled with fluorescein isothiocyanate.Proc. Natl. Acad. Sci. USA 81:2223–2226Google Scholar
  36. Poiree, J.C., Mengual, R., Sudaka, P. 1979. Identification of a protein component of horse kidney brush borderd-glucose transport system.Biochem. Biophys. Res. Commun. 90:1387–1392Google Scholar
  37. Roosemont, J.L. 1978. Reaction of histidine residues in proteins with diethylpyrocarbonate: Differential molar absorptivities and reactivities.Anal. Biochem. 88:314–320Google Scholar
  38. Schaeffer, J.F., Preston, R.L., Curran, P.F. 1973. Inhibition of amino acid transport in rabbit intestine byp-chloromercuriphenyl sulfonic acid.J. Gen. Physiol. 62:131–146Google Scholar
  39. Schmidt, U.M., Eddy, B., Fraser, C.M., Venter, J.C., Semenza, G. 1983. Isolation of (a subunit of) the Na+/d-glucose cotransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies.FEBS Lett. 161:279–283Google Scholar
  40. Sheridan, E., Rumrich, G., Ullrich, K.J. 1983. Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney.Pfluegers Arch. 399:18–28Google Scholar
  41. Sutherland, R.M., Rothstein, A., Weed, R.I. 1967. Erythrocyte membrane sulfhydryl groups and cation permeability.J. Cell. Physiol. 69:185–198Google Scholar
  42. Takahashi, K. 1968. The reaction of phenylglyoxal with arginine residues in proteins.J. Biol. Chem. 243:6171–6179Google Scholar
  43. Tipton, K.F., Dixon, H.B.F. 1979. Effects of pH on enzymes.Methods Enzymol. 63:183–234Google Scholar
  44. Turner, R.J., George, J.N. 1983. Evidence for two disulfide bonds important to the functioning of the renal outer cortical brush border membraned-glucose transporter.J. Biol. Chem. 258:3565–3570Google Scholar
  45. Ullrich, K.J., Rumrich, G., Kloss, S. 1982. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aliphatic compounds.Pfluegers Arch. 395:220–226Google Scholar
  46. Watson, H.C., Kendrew, J.C., Stryer, L. 1964. The binding ofp-chloromercuribenzene sulphonate to crystals of sperm whale myoglobin.J. Mol. Biol. 8:166–169Google Scholar
  47. Weber, J., Semenza, J. 1983. Chemical modification of the small intestinal Na+/d-glucose cotransporter by amino group reagents: Evidence for a role of amino group(s) in the binding of the sugar.Biochim. Biophys. Acta 731:437–447Google Scholar
  48. Wiejnans, R.A., Muller, F. 1982. A study ofp-hydroxybenzoate hydroxylase fromPseudomonas fluorescens: Chemical modification of histidine residues.Biochemistry 21:6639–6646Google Scholar
  49. Will, P.C., Hopfer, U. 1979. Apparent inhibition of active nonelectrolyte transport by increased sodium permeability of plasma membranes. Mechanism of action ofp-chloromercuribenzene sulfonate.J. Biol. Chem. 254:3806–3811Google Scholar
  50. Wright, E.M., Wright, S.H., Hirayama, B., Kippen, I. 1982. Interactions between lithium and renal transport of Krebs cycle intermediates.Proc. Natl. Acad. Sci. USA 79:7514–7517Google Scholar
  51. Wright, S.H., Hirayama, B., Kaunitz, J.D., Kippen, I., Wright, E.M. 1983. Kinetics of sodium succinate cotransport across renal brush-border membranes.J. Biol. Chem. 258:5456–5462Google Scholar
  52. Wright, S.H., Kippen, I., Klinenberg, J.R., Wright, E.M. 1980. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders.J. Membrane Biol. 57:73–82Google Scholar
  53. Wright, S.H., Kippen, I., Wright, E.M. 1982. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.J. Biol. Chem. 257:1773–1778Google Scholar
  54. Wright, S.H., Krasne, S., Kippen, I., Wright, E.M. 1981. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes: Effects on fluorescence of a potential-sensitive cyanine dye.Biochim. Biophys. Acta 640:767–778Google Scholar
  55. Yoshida, H., Wood, H.G. 1978. Crystalline pyruvate, phosphate dikinase from bacterioides symbiosus. Modification of essential histidyl residues and bromopyruvate interaction.J. Biol. Chem. 253:7650–7655Google Scholar
  56. Yun, S., Suelter, C.H. 1979. Modification of yeast pyruvate kinase by an active site-directed reagent, bromopyruvate.J. Biol. Chem. 254:1811–1815Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • N. Bindslev
    • 1
  • E. M. Wright
    • 1
  1. 1.Department of Physiology, Center of Health SciencesUniversity of CaliforniaLos Angeles

Personalised recommendations