Skip to main content
Log in

Histidyl residues at the active site of the Na/succinate cotransporter in rabbit renal brush borders

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Mono-, dicarboxylic acid-, andd-glucose transport were measured in brush border vesicles from renal cortex after treatment with reagents known to modify terminal amino, lysyl, ɛ-amino, guanidino, serine/threonine, histidyl, tyrosyl, tryptophanyl and carboxylic residues. All three sodium-coupled cotransport systems proved to possess sulfhydryl (and maybe tryptophanyl sulfhydryl, disulfide, thioether and tyrosyl) residues but not at the substrate site or at the allosteric cavity for the Na coion. Histidyl groups seem to be located in the active site of the dicarboxylic transporter in that the simultaneous presence of Na and succinate protects the transporter against the histidyl specific reagent diethylpyrocarbonate. Lithium, which specifically competes for sodium sites in the dicarboxylic acid transporter, substantially blocked the protective effect of Na and succinate. Hydroxylamine specifically reversed the covalent binding of diethylpyrocarbonate to the succinate binding site. The pH dependence of the Na/succinate cotransport is consistent with an involvement of histidyl and sulfhydryl residues. We conclude that a histidyl residue is at, or is close to, the active site of the dicarboxylate transporter in renal brush border membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alliel, P.M., Mulet, C., Lederer, F. 1980. Bromopyruvate as an affinity label for baker's yeast flavocytochrome b2. Stoichiometry of incorporation and localization on the peptide chain.Eur. J. Biochem. 105:343–351

    Google Scholar 

  • Avaeva, S.M., Krasnova, V.I. 1975. Reactions of diethyl pyrocarbonate with imidazole and with histidine derivatives.Sov. J. Bioorg. Chem. 1:1151–1155

    Google Scholar 

  • Belleau, B., DiTullio, V., Godin, D. 1969. The mechanism of irreversible adrenergic blockade by N-carbethoxydihydroquinolines—Model studies with typical serine hydrolases.Biochem. Pharmacol. 18:1039–1044

    Google Scholar 

  • Berger, S.L. 1975. Diethyl pyrocarbonate: An examination of its properties in buffered solutions with a new assay technique.Anal. Biochem. 67:428–437

    Google Scholar 

  • Birkett, D.J., Price, N.C., Radda, G.K., Salomon, A.G. 1970. The reactivity of SH groups with a flourogenic reagent.FEBS Lett. 6:346–348

    Google Scholar 

  • Bode, F., Baumann, K., Frasch, W., Kinne, R. 1970. Die bindung von Phlorrhizin an die burstensaum fraktion der rattenniere.Pfluegers Arch. 315:53–65

    Google Scholar 

  • Burstein, Y., Walsh, K.A., Neurath, H. 1974. Evidence of an essential histidine residue in thermolysin.Biochemistry 13:205–210

    Google Scholar 

  • Cantley, L.C., Gelles, J., Josephson, L. 1978. Reaction of (Na−K)ATPase with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole: Evidence for an essential tyrosine at the active site.Biochemistry 17:418–425

    Google Scholar 

  • Chang, G., Hsu, R.Y. 1973. The substrate analog bromopyruvate as a substrate, an inhibitor and an alkylating agent of malic enzyme of pigeon liver.Biochem. Biophys. Res. Commun. 55:580–587

    Google Scholar 

  • Cohen, L.A. 1968. Group-specific reagents in protein chemistry.Annu. Rev. Biochem. 37:695–726

    Google Scholar 

  • Cousineau, J., Meighen, E. 1976. Chemical modification of bacterial luciferase with ethoxyformic anhydride: Evidence for an essential histidyl residue.Biochemistry 15:4992–5000

    Google Scholar 

  • Fontana, A. 1972. Modification of tryptophan with BNPS-Skatole 2-(2-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine).Methods Enzymol. 25:419–423

    Google Scholar 

  • Garrison, C.K., Himes, R.H. 1975. The reaction between diethylpyrocarbonate and sulfhydryl groups in carboxylate buffers.Biochem. Biophys. Res. Commun. 67:1251–1255

    Google Scholar 

  • Gerhart, J.C., Schachmann, H.K. 1968. Allosteric interaction in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands.Biochemistry 2:538–552

    Google Scholar 

  • Hartman, F.C. 1977. Haloketones as affinity labelling reagents.Methods Enzymol. 47:130–153

    Google Scholar 

  • Hayes, M.R., McGivan, J. 1983. Comparison of the effects of certain thiol reagents on alanine transport in plasma membrane vesicles from rat liver and their use in identifying the alanine carrier.Biochem. J. 214:489–495

    Google Scholar 

  • Jennings, M.L., Adams-Lackey, M. 1982. A rabbit erythrocyte membrane protein associated with L-lactate transport.J. Biol. Chem. 257:12866–12871

    Google Scholar 

  • Kippen, I., Hirayama, B., Klinenberg, J.R., Wright, E.M. 1979. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border.Proc. Natl. Acad. Sci. USA 76:3397–3400

    Google Scholar 

  • Klip, A., Grinstein, S., Semenza, G. 1979. Distribution of sulfhydryl groups in intestinal brush border membranes: Localization of side-chains essential for glucose transport and phlorizin binding.Biochim. Biophys. Acta 558:233–245

    Google Scholar 

  • Knowlers, J.R. 1976. The intrinsic pK a -values of functional groups in enzymes: Improper deductions from the pH-dependence of steady-state parameters.CRC Crit. Rev. Biochem. 4:165–173

    Google Scholar 

  • Kragh-Hansen, U., Jørgensen, K.E., Sheikh, I.M. 1982. The use of a potential sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Uptake ofl-malate andd-malate by luminal-membrane vesicles.Biochem. J. 208:369–376

    Google Scholar 

  • Liao, T., Wadano, A. 1979. Inactivation of DNase by 2-nitro-5-thiocyanobenzoic acid. II. Serine and threonine are sites of reaction in the DNase molecule.J. Biol. Chem. 254:9602–9607

    Google Scholar 

  • Lin, J.T., Stroh, A., Kinne, R. 1982. Renal sodiumd-glucose cotransport system. Involvement of tyrosine residues in sodium-transporter interaction.Biochim. Biophys. Acta 692:210–217

    Google Scholar 

  • Little, C. 1977. The histidine residues of phospholipase C fromBacillus cereus.Biochem. J. 167:399–404

    Google Scholar 

  • Melchior, W.B., Fahrney, D. 1970. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with α-chymotrypsin, pepsin and pancreatic ribonuclease at pH 4.Biochemistry 2:251–258

    Google Scholar 

  • Meloche, H.P. 1970. Reaction of the substrate analog bromopyruvate with two active site conformers of 2-keto-3-deoxy-6 phosphogluconic aldolase.Biochemistry 9:5050–5055

    Google Scholar 

  • Miles, E.W. 1977. Modification of histidyl residues in proteins by diethoxypyrocarbonate.Methods Enzymol. 47:431–442

    Google Scholar 

  • Miles, E.W., Kumagai, H. 1974. Modification of essential histidyl residues of the β2 subunit of tryptophan synthetase by photooxidation in the presence of pyridoxal 5′-phosphate andl-serine and by diethylpyrocarbonate.J. Biol. Chem. 249:2843–2851

    Google Scholar 

  • Mircheff, A.K., Kippen, I., Hirayama, B., Wright, E.M. 1982. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.J. Membrane Biol. 64:113–122

    Google Scholar 

  • Morrison, M., Bayse, G.S. 1970. Catalysis of iodination by lactoperoxidase.Biochemistry 9:2995–3000

    Google Scholar 

  • Mühlrad, A., Hegyi, G., Toth, G. 1967. Effect of diethylpyrocarbonate on proteins. I. Reaction of diethylpyrocarbonate with amino acids.Acta. Biochim. Biophys. Acad. Sci. Hung. 2:19–29

    Google Scholar 

  • Muren, J.F., Weissman, A. 1971. Depressant 1,2-dihydroquinolines and related derivatives.J. Med. Chem. 14:49–53

    Google Scholar 

  • Nord, E.P., Wright, S.H., Kippen, I., Wright, E.M. 1982. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles.Am. J. Physiol. 243:F456-F462

    Google Scholar 

  • Nord, E.P., Wright, S.H., Kippen, I., Wright, E.M. 1983. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes.J. Membrane Biol. 72:213–221

    Google Scholar 

  • Peerce, B.E., Wright, E.M. 1984. Conformation changes in the intestinal brush border Na-glucose cotransporter labeled with fluorescein isothiocyanate.Proc. Natl. Acad. Sci. USA 81:2223–2226

    Google Scholar 

  • Poiree, J.C., Mengual, R., Sudaka, P. 1979. Identification of a protein component of horse kidney brush borderd-glucose transport system.Biochem. Biophys. Res. Commun. 90:1387–1392

    Google Scholar 

  • Roosemont, J.L. 1978. Reaction of histidine residues in proteins with diethylpyrocarbonate: Differential molar absorptivities and reactivities.Anal. Biochem. 88:314–320

    Google Scholar 

  • Schaeffer, J.F., Preston, R.L., Curran, P.F. 1973. Inhibition of amino acid transport in rabbit intestine byp-chloromercuriphenyl sulfonic acid.J. Gen. Physiol. 62:131–146

    Google Scholar 

  • Schmidt, U.M., Eddy, B., Fraser, C.M., Venter, J.C., Semenza, G. 1983. Isolation of (a subunit of) the Na+/d-glucose cotransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies.FEBS Lett. 161:279–283

    Google Scholar 

  • Sheridan, E., Rumrich, G., Ullrich, K.J. 1983. Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney.Pfluegers Arch. 399:18–28

    Google Scholar 

  • Sutherland, R.M., Rothstein, A., Weed, R.I. 1967. Erythrocyte membrane sulfhydryl groups and cation permeability.J. Cell. Physiol. 69:185–198

    Google Scholar 

  • Takahashi, K. 1968. The reaction of phenylglyoxal with arginine residues in proteins.J. Biol. Chem. 243:6171–6179

    Google Scholar 

  • Tipton, K.F., Dixon, H.B.F. 1979. Effects of pH on enzymes.Methods Enzymol. 63:183–234

    Google Scholar 

  • Turner, R.J., George, J.N. 1983. Evidence for two disulfide bonds important to the functioning of the renal outer cortical brush border membraned-glucose transporter.J. Biol. Chem. 258:3565–3570

    Google Scholar 

  • Ullrich, K.J., Rumrich, G., Kloss, S. 1982. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aliphatic compounds.Pfluegers Arch. 395:220–226

    Google Scholar 

  • Watson, H.C., Kendrew, J.C., Stryer, L. 1964. The binding ofp-chloromercuribenzene sulphonate to crystals of sperm whale myoglobin.J. Mol. Biol. 8:166–169

    Google Scholar 

  • Weber, J., Semenza, J. 1983. Chemical modification of the small intestinal Na+/d-glucose cotransporter by amino group reagents: Evidence for a role of amino group(s) in the binding of the sugar.Biochim. Biophys. Acta 731:437–447

    Google Scholar 

  • Wiejnans, R.A., Muller, F. 1982. A study ofp-hydroxybenzoate hydroxylase fromPseudomonas fluorescens: Chemical modification of histidine residues.Biochemistry 21:6639–6646

    Google Scholar 

  • Will, P.C., Hopfer, U. 1979. Apparent inhibition of active nonelectrolyte transport by increased sodium permeability of plasma membranes. Mechanism of action ofp-chloromercuribenzene sulfonate.J. Biol. Chem. 254:3806–3811

    Google Scholar 

  • Wright, E.M., Wright, S.H., Hirayama, B., Kippen, I. 1982. Interactions between lithium and renal transport of Krebs cycle intermediates.Proc. Natl. Acad. Sci. USA 79:7514–7517

    Google Scholar 

  • Wright, S.H., Hirayama, B., Kaunitz, J.D., Kippen, I., Wright, E.M. 1983. Kinetics of sodium succinate cotransport across renal brush-border membranes.J. Biol. Chem. 258:5456–5462

    Google Scholar 

  • Wright, S.H., Kippen, I., Klinenberg, J.R., Wright, E.M. 1980. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders.J. Membrane Biol. 57:73–82

    Google Scholar 

  • Wright, S.H., Kippen, I., Wright, E.M. 1982. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.J. Biol. Chem. 257:1773–1778

    Google Scholar 

  • Wright, S.H., Krasne, S., Kippen, I., Wright, E.M. 1981. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes: Effects on fluorescence of a potential-sensitive cyanine dye.Biochim. Biophys. Acta 640:767–778

    Google Scholar 

  • Yoshida, H., Wood, H.G. 1978. Crystalline pyruvate, phosphate dikinase from bacterioides symbiosus. Modification of essential histidyl residues and bromopyruvate interaction.J. Biol. Chem. 253:7650–7655

    Google Scholar 

  • Yun, S., Suelter, C.H. 1979. Modification of yeast pyruvate kinase by an active site-directed reagent, bromopyruvate.J. Biol. Chem. 254:1811–1815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindslev, N., Wright, E.M. Histidyl residues at the active site of the Na/succinate cotransporter in rabbit renal brush borders. J. Membrain Biol. 81, 159–170 (1984). https://doi.org/10.1007/BF01868980

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868980

Key Words

Navigation