Skip to main content
Log in

Cellular ions in intact and denervated muscles of the rat

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Tissue composition, membrane potentials and cellular activity of potassium, sodium and chloride have been measured in innervated and denervated rat skeletal muscles incubatedin vitro. After denervation for 3 days, tissue water, sodium and chloride were increased but cellular potassium content and measured activity were little affected, despite a decrease of 16 mV in resting membrane potential which would have necessitated a decrease in cellular potassium activity of almost 50% were potassium distributed at electrochemical equilibrium. These findings, therefore, preclude a decreased electrochemical potential gradient for potassium as the cause of the membrane depolarization characteristic of denervated muscle fibers. Analysis of the data excludes an important contribution of rheogenic sodium transport to the resting potential of innervated muscles. These results strongly support the hypothesis that the decreased membrane potential in denervated fibers reflects a relative increase in the membrane permeability to sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque, E.X., McIsaac, R.J. 1970. Fast and slow mammalian muscles after denervation.Exp. Neurol. 26:183–202

    PubMed  Google Scholar 

  • Albuquerque, E.X., Schuh, F.T., Kauffmann, F.C. 1971. Early membrane depolarisation of the fast mammalian muscle after denervation.Pfluegers Arch. 328:36–50

    Google Scholar 

  • Albuquerque, E.X., Thesleff, S. 1968. A comparative study of membrane properties of innervated and chronically denervated fast and slow skeletal muscles of the rat.Acta Physiol. Scand. 73:471–481

    PubMed  Google Scholar 

  • Bray, J.J., Hawken, M.J., Hubbard, J.I., Pockett, S., Wilson, L. 1976. The membrane potential of rat diaphragm muscle fibres and the effect of denervation.J. Physiol. (London) 225:651–667

    Google Scholar 

  • Bray, J.J., Hubbard, J.I., Mills, R.G. 1979. The trophic influence of tetrodotoxin-inactive nerves on normal and reinnervated rat skeletal muscles.J. Physiol. (London) 297:479–491

    Google Scholar 

  • Brown, K.T., Flaming, D.G. 1977. New microelectrode techniques for intracellular work in small cells.Neuroscience 2:813–827

    Google Scholar 

  • Burg, M.B., Orloff, J. 1964. Active cation transport by kidney tubules at 0°C.Am. J. Physiol. 207:983–988

    PubMed  Google Scholar 

  • Camerino, D., Bryant, S.H. 1976. Effects of denervation and colchicine treatment on the chloride conductance of rat skeletal muscle fibres.J. Neurobiol. 7:221–228

    PubMed  Google Scholar 

  • Charlton, M.P., Silverman, H., Atwood, H.L. 1981. Intracellular potassium activity in muscles of normal and dystrophic muscle: Anin vivo electrometric study.Exp. Neurol. 71:203–219

    PubMed  Google Scholar 

  • Clausen, T., Sellin, L.C., Thesleff, S. 1981. Quantitative changes in ouabain binding after denervation and during reinnervation of mouse skeletal muscle.Acta Physiol. Scand. 111:373–375

    PubMed  Google Scholar 

  • Cotlove, E., Trantham, H.V., Bowman, R.L. 1958. An instrument and method for automatic, rapid, accurate and sensitive titration of chloride in biological samples.J. Lab. Clin. Med. 51:461–468

    PubMed  Google Scholar 

  • Creese, R., El-Shafie, A.L., Vebova, G. 1968. Sodium movements in denervated muscle and the effects of antimycin A.J. Physiol. (London) 197:279–294

    Google Scholar 

  • Delong, J., Civan, M.M. 1980. Intracellular chemical activity of potassium in toad urinary bladder.Curr. Topics Membr. Transp. 13:93–105

    Google Scholar 

  • Dulhunty, A. 1978. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres.J. Physiol. (London) 276:67–82

    Google Scholar 

  • Fenn, W.O. 1937. Loss of potassium in voluntary contraction.Am. J. Physiol. 120:675–680

    Google Scholar 

  • Festoff, B.W., Oliver, K.L., Reddy, N.B. 1977.In vitro studies of skeletal muscle membranes: Effects of denervation on the macromolecular components of cation transport in red and white skeletal muscle.J. Membrane Biol. 32:345–360

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1975. The sodium pump.Annu. Rev. Physiol. 37:13–55

    PubMed  Google Scholar 

  • Goldmann, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Jacquez, J.A., Schultz, S.G. 1974. A general relation between membrane potential, ion activities, and pump fluxes for symmetric cells in a steady state.Math. Biosci. 20:19–25

    Google Scholar 

  • Jakobsson, E. 1980. Interactions of cell volume, membrane potential, and membrane transport parameters.Am. J. Physiol. 238:C196-C206

    PubMed  Google Scholar 

  • Jørgensen, P.L. 1980. Sodium and potassium ion pump activity in kidney tubules.Physiol. Rev. 60:864–917

    PubMed  Google Scholar 

  • Kernan, R.P., MacDermott, M. 1976. Intracellular potassium concentrations and extracellular spaces in rat skeletal muscles immersed in normal, hypotonic and high-K modified Krebs fluid, determined by potassium-selective microelectrodes.J. Physiol. (London) 263:158P-160P

    Google Scholar 

  • Leader, J.P. 1982. An improved technique for the construction of a recessed-tip solid-state chloride electrode for intracellular use.Proc. Univ. Otago Med. Sch. 60:34–36

    Google Scholar 

  • Locke, S., Solomon, H.C. 1967. Relation of resting potential of gastrocnemius and soleus muscles to innervation, activity and the Na−K pump.J. Exp. Zool. 166:377–386

    PubMed  Google Scholar 

  • Lullmann, H. 1958. Uber die Knostanz des Membranpotentials bei spontanen Anderungen der Ionesgradienten am normalen und denervierten Rattenzwerchfell.Pfluegers Arch. 267:188–199

    Google Scholar 

  • McArdle, J.J., Albuquerque, E.X. 1975. Effects of ouabain on denervated and dystrophic muscles of the mouse.Exp. Neurol. 47:353–356

    PubMed  Google Scholar 

  • McCaig, D., Leader, J.P. 1984. Intracellular chloride activity in theextensor digitorum longus (EDL) muscle of the rat.J. Membrane Biol. 81:9–17

    Google Scholar 

  • McIver, D.J.L., Macknight, A.D.C. 1974. Extracellular space in some isolated tissues.J. Physiol. (London) 239:31–49

    Google Scholar 

  • Moore, E.W., Dietschy, J.M. 1964. Na and K activity coefficients in bile and bile salts determined by glass electrodes.Am. J. Physiol 206:1111–1117

    PubMed  Google Scholar 

  • Mullins, L.J., Noda, K. 1963. The influence of sodium-free solutions on the membrane potential of frog muscle fibres.J. Gen. Physiol. 47:117–132

    PubMed  Google Scholar 

  • O'Doherty, J., Garcia-Diaz, J.F., Armstrong, W.McD. 1979. Sodium-selective liquid ion-exchange microelectrodes for intracellular measurement.Science 203:1349–1351

    PubMed  Google Scholar 

  • Pappone, P.A. 1980. Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres.J. Physiol. (London) 306:377–410

    Google Scholar 

  • Robbins, N. 1977. Cation movements in normal and short-term denervated rat fast twitch muscle.J. Physiol. (London) 271:605–624

    Google Scholar 

  • Robinson, J.R. 1965. Oxygen consumption and electrolyte composition of kidney slices between 20 and 0°C.J. Physiol. (London) 177:112–121

    Google Scholar 

  • Sellin, L.C., McArdle, J.J. 1977. Effect of ouabain on reinnervating mammalian skeletal muscle.Eur. J. Pharmacol. 41:337–340

    PubMed  Google Scholar 

  • Severin, S.E., Boldyrev, A.A., Tkachuk, V.A. 1974. Some properties of Na+, K+-stimulated ATPase from normal and denervated muscles of rabbit with special reference to its sensitivity to acetylcholine.Comp. Gen. Pharmacol. 5:181–185

    Google Scholar 

  • Shabunova, I., Vyskocil, F. 1982. Postdenervation changes of intracellular potassium and sodium measured by ion-selective microelectrodes in rat soleus and extensor digitorum longus muscle fibres.Pfluegers Arch. 394:161–164

    Google Scholar 

  • Wallick, E.T., Lane, E.K., Schwartz, A. 1979. Biochemical mechanism of the sodium pump.Annu. Rev. Physiol. 41:397–411

    PubMed  Google Scholar 

  • Ware, F., Bennett, A.L., McIntyre, A.R. 1954. Membrane resting potential of denervated mammalian skeletal muscle measuredin vivo.Am. J. Physiol. 177:115–118

    PubMed  Google Scholar 

  • Wareham, A.C. 1978. Effect of denervation and ouabain on the response of the resting membrane potential of rat skeletal muscle to potassium.Pfluegers Arch. 373:225–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leader, J.P., Bray, J.J., Macknight, A.D.C. et al. Cellular ions in intact and denervated muscles of the rat. J. Membrain Biol. 81, 19–27 (1984). https://doi.org/10.1007/BF01868806

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868806

Key Words

Navigation