Skip to main content
Log in

Comparative study of Y3+ effect on calcium-dependent processes in frog cardiac muscle and mitochondria of rat cardiomyocytes

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Inotropic effects of yttrium acetate (Y3+) on contractions of myocardium preparations of the frog Rana ridibunda, as well as on respiration and the inner membrane potential (ΔΨmito) of isolated rat heart mitochondria were studied. 2 mM yttrium in Ringer solution was found to significantly reduce the amplitude of myocardium contractions, evoked by electric stimulation, and increase the half-relaxation time (n = 5). In experiments with Ca2+, Y3+ decreased the Ca2+-dependent basal respiration rate in rat heart mitochondria, energized by glutamate and malate, impeded the reduction in respiration of these mitochondria operating in state 3 after Chance or uncoupled by 2,4-dinitrophenol, and inhibited a Ca2+-induced reduction in their inner membrane potential. The data obtained are important for better understanding the mechanism underlying Y3+ effects on the myocardial Ca2+-dependent processes. Possible mechanisms of the negative inotropic effect of Y3+ on myocardium and its influence on the Ca2+-dependent processes in rat mitochondria are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, M.Y., Zhang, P., Yang, W.D., and Liu, J.S., Effect of long-term intake of Y3+ in drinking water on learning–memory functions and growth–development of rats, Wei Sheng Yan Jiu, 2006, vol. 35, pp. 283–285.

    CAS  PubMed  Google Scholar 

  2. Zhalsaraeva, D.M., Side effect of yttrium sulfate, Candidate Sci. Dissertation, Ulan-Ude, 2002.

    Google Scholar 

  3. Memon, K., Kuzel, T.M., Vouche, M., Atassi, R., Lewandowski, R.J., and Salem, R., Hepatic yttrium-90 radioembolization for metastatic melanoma: a single-center experience, Melanoma Res., 2014, vol. 24, pp. 244–251.

    Article  CAS  PubMed  Google Scholar 

  4. Samonov, A.E., Perspectives of development of production and consumption of rare-earth production in Russia, Mater. Vseross. Nauch. Konf., 2008, pp. 134–138.

    Google Scholar 

  5. Amelin, A.V., Ignatov, Yu.D., Petrischev, N.N., Pcheliniev, M.V., and Stepanyan, M.L., Narusheniya sistemy gemostaza i ikh farmakologisheskaya korrektsiya (Disturbances in Hemostasis System and Their Pharmacological Correction), St. Petersburg, 2000.

    Google Scholar 

  6. Perrin, D.D., Stability Constants of Metal–Ion Complexes. Organic Ligands, Pergamon Press, 1979.

    Google Scholar 

  7. Selvaraj, V., Bodapati, S., Murray, E., Rice, K.M., Winston, N., Shokuhfar, T., Zhao, Y., and Blough, E., Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells, Int. J. Nanomed., 2014, vol. 9, pp. 1379–1391.

    Article  Google Scholar 

  8. Shemarova, I.V., Korotkov, S.M., and Nesterov, V.P., Effect of La3+ on the maintenance systems of contractility in vertebrate myocardium, Zh. Evol. Biokhim. Fiziol., 2013, vol. 49, no. 4, pp. 285–289.

    CAS  PubMed  Google Scholar 

  9. Shemarova, I.V., Sobol’, K.V., Korotkov, S.M., and Nesterov, V.P., Effect of yttrium on calciumdependent processes in vertebrate myocardium, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, no. 3, pp. 196–200.

    CAS  PubMed  Google Scholar 

  10. Chentsov, Yu.S., Chondriome—complex of cellular mitochondria, Sorosovskii Obraz. Zh., 1997, no. 12, pp. 10–17.

    Google Scholar 

  11. Touraki, M., Thomopoulos, G.N., and Beis, I., Effects of calcium depletion and calcium paradox on the ultrastructure of the frog heart, J. Submicrosc. Cytol. Pathol., 1991, vol. 23, pp. 295–303.

    CAS  PubMed  Google Scholar 

  12. Bakeeva, L.E., Skulachev, V.P., Chentsov, Yu.S., Inter-mitochondrial contacts in cardiomyocytes, Tsitologiya, 1982, no. 2, pp. 161–166.

    Google Scholar 

  13. Sobol’, K.V., Korotkov, S.M., and Nesterov, V.P., Inotropic effect of new probiotic product on myocardium contraction. Comparison with effects of diazoxide, Biofizika, 2014, vol. 59, no. 5, pp. 959–966.

    PubMed  Google Scholar 

  14. Korotkov, S.M., Emel’yanova, L.B., Brailovskaya, I.V., and Nesterov, V.P., Effect of pinacidine and calcium of isolated mitochondria of rat heart, Dokl. Akad. Nauk, 2012, vol. 443, no 5, pp. 632–636.

    Google Scholar 

  15. Korotkov, S., Konovalova, S., Emelyanova, L., and Brailovskaya, I., Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria, J. Inorg. Biochem., 2014, vol. 141, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  16. Shemarova, I.V., Korotkov, S.M., Demina, I.N., and Nesterov, V.P., Contractility of myocardium and mitochondria. Effects of Ni2+, Zh. Evol. Biokhim. Fiziol., 2010, vol. 46, no. 2, pp. 138–142.

    CAS  PubMed  Google Scholar 

  17. Korotkov, S.M., Brailovskaya, I.V., Shumakov, A.R., and Emelyanova, L.V., Closure of mitochondrial potassium channels favors opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria, J. Bioenerg. Biomembr., 2015, vol. 47, pp. 243–254.

    Article  CAS  PubMed  Google Scholar 

  18. Bers, D.M., Cardiac excitation–contraction coupling, Nature, 2002, vol. 415, pp. 198–205.

    Article  CAS  PubMed  Google Scholar 

  19. Tevoufouet, E.E., Nembo, E.N., Dibué-Adjei, M., Hescheler, J., Nguemo, F., and Schneider, T., Cardiac functions of voltage-gated Ca2+ channels: role of the pharmacoresistant type (E-/R-type) in cardiac modulation and putative implication in sudden unexpected death in epilepsy (SUDEP), Rev. Physiol. Biochem. Pharmacol., 2014, vol. 167, pp. 115–139.

    CAS  PubMed  Google Scholar 

  20. Harris, E.J. and Zaba, B., The phosphate requirement for Ca2+-uptake by heart and liver mitochondria, FEBS Lett., 1977, vol. 79, pp. 284–290.

    Article  CAS  PubMed  Google Scholar 

  21. Shemarova, I.V., Korotkov, S.M., and Nesterov, V.P., Influence of oxidative processes in mitochondria on contractility of cardiac muscle of frog Rana temporaria. Effects of cadmium, Zh. Evol. Biokhim. Fiziol., 2011, vol. 47, no. 4, pp. 306–310.

    CAS  PubMed  Google Scholar 

  22. Niggli, E. and Lederer, W.J., Activation of Na–Ca exchange current by photolysis of “caged calcium”, Biophys. J., 1993, vol. 65, pp. 882–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharma, P., Patchell, V.B., Gao, Y., Evans, J.S., and Levine, B.A., Cytoplasmic interactions between phospholamban residues 1–20 and the calcium-activated ATPase of the sarcoplasmic reticulum, Biochem. J., 2001, vol. 355, pp. 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenfeldt, F.L., Pepe, S., Linnane, A., Nagley, P., Rowland, M., Ou, R., Marasco, S., Lyon, W., and Esmore, D., Coenzyme Q10 protects the aging heart against stress: studies in rats, human tissues, and patients, Ann. N. Y. Acad. Sci., 2002, vol. 959, pp. 355–359.

    Article  CAS  PubMed  Google Scholar 

  25. Triggle, D.J., The classification of calcium antagonists, J. Cardiovasc. Pharmacol., 1996, vol. 27, p. S14.

    Google Scholar 

  26. Szabo, I. and Zoratti, M., The mitochondrial megachannel is the permeability transition pore, J. Bioenerg. Biomembr., 1999, vol. 24, pp. 111–117.

    Article  Google Scholar 

  27. Waldmeier, P.C., Feldtrauer, J.J., Qian, T., and Lemasters, J.J., Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811, Mol. Pharmacol., 2002, vol. 62, pp. 22–29.

    Article  CAS  PubMed  Google Scholar 

  28. Korotkov, S.M., Nesterov, V.P., Brailovskaya, I.V., Furaev, V.V., and Novozhilov, A.V., Tl+ induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria, J. Bioenerg. Biomembr., 2013, vol. 45, pp. 531–539.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Korotkov.

Additional information

Original Russian Text © S.M. Korotkov, K.V. Sobol’, I.V. Shemarova, V.V. Furaev, V.P. Nesterov, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 3, pp. 177—183.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkov, S.M., Sobol’, K.V., Shemarova, I.V. et al. Comparative study of Y3+ effect on calcium-dependent processes in frog cardiac muscle and mitochondria of rat cardiomyocytes. J Evol Biochem Phys 52, 196–203 (2016). https://doi.org/10.1134/S0022093016030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016030029

Key words

Navigation