Skip to main content
Log in

Autonomic modulation of insulin levels in foetal sheep

  • Research Paper
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

The autonomic nervous system plays an important part in metabolic and circulatory adaptation of the foetus to changes in its intrauterine environment and after delivery. Foetal and neonatal glucose metabolism and insulin secretion are influenced by changes in humoral catecholamine levels as they may occur during asphyxia. To assess the role of neuronal and humoral sympathetic activity in foetal endocrine pancreatic regulation, chronically catheterized foetal sheep near term were chemically sympathectomized with 6-hydroxydopamine. Experiments were carried out in unanaesthetized foetal sheepin utero in the absence of uterine contractions. Insulin and glucose levels, blood gases, acid-base status and catecholamines were measured before, during and after a 2 min occlusion of uterine blood flow caused by mechanical constriction of the maternal aorta. Pancreatic blood flow was determined using radioactive labelled microspheres. During normoxaemia, insulin levels, pancreatic blood flow and glucose transport to the organ in sympathectomized foetuses were elevated compared with intact animals, whereas glucose concentrations did not show any significant differences. After the onset of asphyxia humoral catecholamine levels rose significantly in both groups. Insulin concentrations in the plasma of both intact and symphathectomized foetuses were no longer different indicating both indirect (blood flow and humoral catecholamine related) and direct (neurally mediated) sympathetic effects on pancreatic beta cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawes GS.Foetal and neonatal physiology. Chicago, IL: Year Book Medical Publishers, 1969: 141–149.

    Google Scholar 

  2. Feige A, Künzel W, Cornely M, Mitzkat HJ. Die Beziehung zwischen Glukosekonzentration und Saeure-Basen-Status im maternen und fetalen Blut waehrend der Geburt.Zeitschrift fuer Geburtshilfe und Perinatologie 1976;180: 106–111.

    Google Scholar 

  3. Jones CT, Ritchie JWK. The metabolic and endocrine effects of circulating catecholamines in foetal sheep.J Physiol 1978;285: 395–408.

    PubMed  Google Scholar 

  4. Jones CT, Ritchie JWK. The effects of adrenergic blockade on fetal response to hypoxia.J Developmental Physiol 1983;5: 211–222.

    Google Scholar 

  5. Jones CT, Ritchie JWK, Walker D. The effects of hypoxia on glucose turnover in the fetal sheep.J Developmental Physiol 1983;5: 223–235.

    Google Scholar 

  6. Bassett JM. Glucagon, insulin and glucose homeostasis in the fetal lamb.Annales de Recherches Veterinaires 1977;8: 362–373.

    PubMed  Google Scholar 

  7. Bassett JM, Fletscher JM. Hormonal regulation of fetal metabolism and growth: the roles of pancreatic and adrenal hormones.Biochem Develop Fetus Neonate. Elsevier Biomedical Press, 1982; 394–423.

  8. Fowden AL. Effects of adrenaline and amino acids on the release of insulin in the sheep fetus.J Endocrinol 1980;87: 113–121.

    PubMed  Google Scholar 

  9. Hickson JDC. The secretion of pancreatic juice in response to stimulation of the vagus nervus in the pig.J Physiol (London) 1970;206: 275–297.

    Google Scholar 

  10. Hickson JDC. The secretory and vascular response to nervous and hormonal stimulation in the pancreas of the pig.J Physiol (London) 1970;206: 299–322.

    Google Scholar 

  11. Simard LC. Les complexes sympathetico-insulaires du pancreas de l'homme adulte.Compt Rend Soc Biol 1935;119: 27–28.

    Google Scholar 

  12. Van Campenhout E. Contribution a l'etude de l'histogenese du pancreas chez quelques mammiferes; les compleces sympathicoinsulaires.Archives de Biologie (Liege) 1927;37: 121.

    Google Scholar 

  13. Iwamoto HS, Rudolph AM, Mirkin BL, Keil LC. Circulatory and humoral responses of sympathectomized fetal sheep to hypoxemia.Am J Physiol 245 (Heart Circ Physiol 14): 1983; H767-H772.

    PubMed  Google Scholar 

  14. Jensen A, Jelinek J. Der katecholamingehalt zentraler und peripherer Organe bei Normoxie und Hypoxie des Feten.Ber Gyn 1986;122: 889.

    Google Scholar 

  15. Rudolph AM, Heymann MA. The circulation of the fetusin utero: methods for studying distribution of blood flow, cardiac output and organ blood flow.Circ Res 1967;21: 163–184.

    PubMed  Google Scholar 

  16. Jensen A, Hohmann M, Künzel W. Redistribution of fetal circulation during repeated asphyxia in sheep: effects on skin blood flow, transcutaneous PO2, and plasma catecholamines.J Develop Physiol 1987;9: 41–55.

    Google Scholar 

  17. Jensen A, Künzel W, Kastendieck E. Repetitive reduction of uterine blood flow and its influence on fetal transcutaneous PO2 and cardiovascular variables.J Develop Physiol 1985;7: 75–78.

    Google Scholar 

  18. Winkler B, Stämmler G, Schaper W. Measurement of radioactive tracer microsphere blood flow with Na 1 (TI)- and Ge-well type detectors.Basic Res Cardiol 1982;77: 292–300.

    PubMed  Google Scholar 

  19. Miller RG. Simultaneous statistical interference. New York, San Francisco, St Louis, London: McGraw-Hill, 1966.

    Google Scholar 

  20. Jensen A, Lang U. Foetal circulatory responses to arrest of uterine blood flow in sheep: effects of chemical sympathectomy.J Develop Physiol 1992;17: 75–86.

    Google Scholar 

  21. Steiner DF, Freinkel N (ed).Handbook of physiology, endocrine pancreas. sect. 7, Vol. I. Washington DC: Am Physiol Soc, 1972.

    Google Scholar 

  22. York DA, Bray GA. Dependence of hypothalamic obesity on insulin, the pituitary and the adrenal gland.Endocrinol 1972;90: 885–894.

    Google Scholar 

  23. Shimazu T, Fukuda A, Ban T. Reciprocal influences of the ventromedial and lateral hypothalamic nuclei on blood glucose level and liver glycogen content.Nature 1966;210: 1178–1179.

    PubMed  Google Scholar 

  24. Shimazu T, Ishikawa K. Modulation by the hypothalamus of glucagon and insulin secretion in rabbits: studies with electrical and chemical stimulations.Endocrinology 1981;108: 605–611.

    PubMed  Google Scholar 

  25. Steffens AB, Mogenson GJ, Stevensen JAF. Blood glucose, insulin and free fatty acid after stimulation and lesions of the hypothalamus.Am J Physiol 1972;222: 1446–1452.

    PubMed  Google Scholar 

  26. Steffens AB. The modulatory effect of the hypothalamus on glucagon and insulin secretion in the rat.Diabetologia 1981;20: 411–416.

    PubMed  Google Scholar 

  27. Teff KL, Mattes RD, Engelman K. Cephalic phase insulin release in normal weight males: verification and reliability.Am J Physiol 1991;261 (Endocrinol Metab 24): E430-E436.

    PubMed  Google Scholar 

  28. Kuznetsova EK. Characteristics of blood supply of the pancreas during different phases of its activity.Fiziologicheskii Zhurnal SSSR 1962;48: 470.

    Google Scholar 

  29. Simard LC. Les complexes neuro-insulaires du pancreas humain.Archives D'Anatomie Microscopique 1937;33: 49–64.

    Google Scholar 

  30. Simard LC. Le complex neuro-insulaire du pancreas.Rev Can Biol 1942;1: 2-J9.

    Google Scholar 

  31. Esterhuizen AC, Sprigg TLB, Lever JD. Nature of islet-cell innervation in the cat pancreas.Diabetes 1968;17: 33–36.

    PubMed  Google Scholar 

  32. Coupland RE. The innervation of the pancreas of the rat, cat and rabbit as revealed by the cholinesterase technique.J Anatomy 1958;92: 43–149.

    Google Scholar 

  33. Shorr SS, Bloom F. Fine structure of islet-cell innervation in the pancreas of normal and alloxan treated rats.Z Zellforsch 1979;103: 12–25.

    Google Scholar 

  34. Fujita F. Histological studies on the neuro-insular complex in the pancreas of some mammals.Zeitschrift fuer Zellforsch 1959;50: 94–109.

    Google Scholar 

  35. Woods SC, Porte D. Neural control of the endocrine pancreas.Physiological Rev 1974;54: 596–601.

    Google Scholar 

  36. Watts RP, Johnson PC. Metabolism and vasodilatation. In: Vanhoutte PM, Leusen I, eds.Vasodilatation. New York: Raven Press, 1981: 175–179.

    Google Scholar 

  37. Robertson RP, Porte D. Adrenergic modulation of basal insulin secretion in man.Diabetes 1973;22: 1–8.

    PubMed  Google Scholar 

  38. Smith PH, Madson KL. Interactions between autonomic nerves and endocrine cells of the gastroenteropancreatic system.Diabetologia 1981;20: 314–322.

    PubMed  Google Scholar 

  39. Bassett JM, Madill D. Influence of prolonged glucose infusions on plasma insulin and growth hormone concentrations of foetal lambs.J Endocrinol 1974;62: 299–309.

    PubMed  Google Scholar 

  40. Bassett JM, Madill D, Burks AH, Pinches RA. glucagon and insulin release in the lamb before and after birth: effects of amino acidsin vitro andin vivo.J Develop Physiol 1982;4: 379–389.

    Google Scholar 

  41. Bassett JM, Thorburn GD. The regulation of insulin secretion by the ovine foetusin utero.J Endocrinol 1971;50: 59–74.

    PubMed  Google Scholar 

  42. Hsu WH, Xiang H, Rajan AS, Boyd AE. Activation of alpha2-adrenergic receptors decreases Ca+ + influx to inhibit insulin secretion in a hamster beta-cell line: an action mediated by a guanosine triphosphate-binding protein.Endocrinol 1991;128: 958–964.

    Google Scholar 

  43. Martin CB. Pharmacological aspects of foetal heart rate regulation during hypoxia. In: Künzel W, (ed).Foetal heart rate monitoring. Springer-Verlag. 1985: 170–184.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, U., Jensen, A. & Künzel, W. Autonomic modulation of insulin levels in foetal sheep. Clinical Autonomic Research 3, 331–338 (1993). https://doi.org/10.1007/BF01827335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01827335

Key words

Navigation