Skip to main content
Log in

Laminar convection with an absorbing and emitting gas

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The heat transfer and fluid flow are determined for fully developed laminar flow in a vertical channel. The effects of natural and forced convection and thermal radiation are included in the analysis. The spectral variation of the radiation properties are included through the use of the total band absorptance. The analysis is general and specific numerical results have been obtained for the 15 micron band of carbon dioxide. A simplified approach for large path is also presented which is in excellent agreement with the more exact results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b :

exponential kernel approximation (0.9, 1.8, respectively)

c p :

specific heat at constant pressure

e ω :

black body spectral emissivity

f 2 :

pressure broadening parameter

g :

acceleration of gravity

K T :

thermal conductivity

k ω :

spectral absorption coefficient

L :

channel spacing

p :

static fluid pressure

q R :

radiant heat flux

q1, total:

total wall heat flux = (q1, conduction) with rad. present +q1, radiation

Ra :

Rayleigh =βgL 3 τ/να

T :

fluid temperature

u :

axial velocity

\(\bar u\) :

non-dimensional velocity

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} \) :

optical depth =C 20 ρ LY

x :

axial coordinate

y :

transverse coordinate

Y :

non-dimensional transverse coordinate

α :

thermal diffusivity

β :

thermal coefficient of volume expansivity

γ :

\( - \left( {\frac{1}{{\rho 0}}\frac{{\partial p}}{{\partial x}} + g} \right)\frac{{L^3 }}{{v\alpha }}\)

μ :

direction cosine

ν :

kinematic viscosity

ρ :

mass density

τ :

=L(dT 1/dx)

φ :

=(T 1T)/τγ

0:

evaluated at origin

1:

evaluated at wall

ωc :

evaluated at band center

m :

mean value

References

  1. Gebhart, B., Heat Transfer, McGraw-Hill Publ. Co., N. Y., 1971.

    Google Scholar 

  2. Martinelli, R. C. andL. M. K. Boelter, University of California, Publication in Eng.5 (1942) 23.

    Google Scholar 

  3. Ostrach, S., NACA Tech. Note 3141 (1954).

  4. Ostrach, S., Grenzschichtforschung (Ed. H. Görtler) Springer, 1958.

  5. Hallman, T. M., ASME Transactions78 (1965) 1831.

    Google Scholar 

  6. Morton, B. R., J. Fluid Mechanics8 (1960) 227.

    Google Scholar 

  7. Greif, R., I. S. Habib andJ. C. Lin, J. Fluid Mechanics46 (1971) 513.

    Google Scholar 

  8. Bratis, J. C. andJ. L. Novotny, Int. J. of Heat and Mass Transfer17 (1974) 23–36.

    Google Scholar 

  9. Cess, R. D., P. Mighdoll andS. N. Tiwari, Int. J. of Heat and Mass Transfer10 (1967) 1521.

    Google Scholar 

  10. Wilson, K. H. andR. Greif, J. of Quantitative Spectroscopy and Radiative Transfer8 (1968) 1061.

    Google Scholar 

  11. Sparrow, E. M. andR. D. Cess, Radiation Heat Transfer, Brooks/Cole Publ. Co., Belmont, Calif., 1966.

    Google Scholar 

  12. Viskanta, R., Advances in Heat Transfer, Irvine, T. F., Jr., and Hartnett, J. P., eds., Vol. III, Academic Press, N. Y., 1966, 175.

    Google Scholar 

  13. Greif, R. andI. S. Habib, J. of Heat Transfer91 (1969) 282.

    Google Scholar 

  14. Tien, C. L. andJ. E. Lowder, Int. J. of Heat and Mass Transter9 (1966) 698.

    Google Scholar 

  15. Edwards, D. K. andW. A. Menard, Appl. Optics3 (1964) 621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donovan, T.E., Greif, R. Laminar convection with an absorbing and emitting gas. Appl. Sci. Res. 31, 110–122 (1975). https://doi.org/10.1007/BF01795830

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01795830

Keywords

Navigation