Skip to main content
Log in

Laminar Mixed Convection in a Vertical Flat Channel with a Constant Wall Heat Flux

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

An analytical solution to a system of momentum and energy equations was obtained for a fully developed laminar flow and heat transfer in a vertical flat channel with a constant wall heat flux under the effect of buoyancy force. The velocity and temperature profiles and the Nusselt numbers for the downward and upward flows are compared. The behavior of these parameters under the effect of the buoyancy force is explained. The predicted Nusselt numbers are compared with the available data for round pipes. All components of the hydraulic resistance coefficient encountered in the upward and downward flows are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Martinelli, R.C. and Boelter, L.M.K., Univ. Calif. Publ. Eng., 1942, vol. 5, no. 2, p. 23.

    Google Scholar 

  2. Ostroumov, G.A., Zh. Tekh. Fiz., 1950, vol. 20, no. 6, p. 750.

    MathSciNet  Google Scholar 

  3. Ostroumov, G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi (Free Convection under Conditions of Internal Problem), Moscow–Leningrad: Gos. Izd. Tekhn.-Teor. Lit., 1952.

  4. Petukhov, B.S., Teploobmen i soprotivlenie pri laminarnom techenii zhidkosti v trubakh (Heat Transfer and Resistance during Laminar Flow of Fluid in Pipes), Moscow: Energiya, 1967.

  5. Gebhart, B., Jaluria, Y., Mahajan, R.L., and Sammakia, B., Buoyancy Induced Flows and Transport, New York: Hemisphere, 1988.

    MATH  Google Scholar 

  6. Hallman, T.M., Trans. ASME, Ser. C, 1956, vol. 78, p. 1831.

    Google Scholar 

  7. Tao, L.N., Appl. Sci. Res., 1960, vol. A9, no. 5, p. 357.

    Article  Google Scholar 

  8. Polyakov, A.F., J. Appl. Mech. Tech. Phys., 1977, vol. 18, no. 1, p. 106.

    Article  ADS  Google Scholar 

  9. Tao, L.N., Trans. ASME, 1960, vol. 82, no. 3, p. 233.

  10. Yao, L.S., Int. J. Heat Mass Transfer, 1983, vol. 26, no. 1, p. 65.

    Article  Google Scholar 

  11. Polyakov, A.F., High Temp., 2014, vol. 52, no. 1, p. 72.

    Article  Google Scholar 

  12. Polyakov, A.F., High Temp., 2015, vol. 53, no. 5, p. 719.

    Article  Google Scholar 

  13. Steiner, A., J. Fluid Mech., 1971, vol. 47, p. 503.

    Article  ADS  Google Scholar 

  14. Collins, M.W., in Proc. 6th Int. Heat Transfer Conf., Toronto, 1978, vol. 1, p. 25.

  15. Coon, C.W. and Perkins, H.C., J. Heat Transfer, 1970, vol. 92, no. 3, p. 506.

    Article  Google Scholar 

  16. Fraim, F.W. and Heiser, W.H., Fluid. Mech., 1968, vol. 33, no. 2, p. 397.

    Article  ADS  Google Scholar 

  17. Kirillov, I.R., Obukhov, D.M., Genin, L.G., Sviridov, V.G., et al., Fusion Eng. Des., 2016, vol. 104, p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Valueva.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valueva, E.P. Laminar Mixed Convection in a Vertical Flat Channel with a Constant Wall Heat Flux. High Temp 57, 372–378 (2019). https://doi.org/10.1134/S0018151X19020238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19020238

Navigation