Skip to main content
Log in

Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker's yeast grown in a variety of hypoxic conditions

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The activities of isocitrate dehydrogenase (NAD), isocitrate dehydrogenase (NADP) and oxoglutarate dehydrogenase have been investigated inSaccharomyces cerevisiae grown in a variety of aerobic and hypoxic conditions, the latter including oxygen deprivation, high glucose concentration, addition of inhibitors of mitochondrial protein synthesis, respiratory inhibition by azide, and impaired respiration mutants.

All hypoxic conditions led to a marked decrease of oxoglutarate dehydrogenase and significant decreases of the two isocitrate dehydrogenases. According to its kinetic properties, the NAD-isocitrate dehydrogenase will not be operative in hypoxia “in vivo”. From these and other related facts it is concluded that hypoxic conditions in yeast generally lead to a splitting of the tricarboxylic acid cycle and that glutamate synthesis in these conditions takes place through the coupling of the NADP-linked isocitrate and glutamate dehydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Amarasinghan and B. D. Davis. J. Biol. Chem. 240, 3664–3668 (1965).

    Google Scholar 

  2. A. Kleinzeller. Biochem. J. 35, 495–501 (1941).

    Google Scholar 

  3. J. A. Lupiañez, A. Machado, I. Nuñez de Castro and F. Mayor. Molecular and Cellular Biochemistry 3, 113–116 (1974).

    Google Scholar 

  4. C. Rossi, J. Hauber and T. P. Singer. Nature 204, 167–170 (1964).

    Google Scholar 

  5. J. Hauber and T. P. Singer. Eur. J. Biochem. 3, 107–116 (1967).

    Google Scholar 

  6. W. Atzpodien, J. M. Gancedo, W. Duntze and H. Holzer. Eur. J. Biochem. 7, 58–62 (1968).

    Google Scholar 

  7. C. Chapman and W. Bartley. Biochem. J. 107, 455–465 (1968).

    Google Scholar 

  8. I. Nuñez de Castro, M. Ugarte, A. Cano and F. Mayor. Eur. J. Biochem. 16, 567–570 (1970).

    Google Scholar 

  9. I. Nuñez de Castro, J. M. Arias-Saavedra, A. Machado and F. Mayor. Molecular and Cellular Biochemistry 3, 109–111 (1974).

    Google Scholar 

  10. A. Kornberg and W. E. Pricer. J. Biol. Chem. 189, 123–136 (1951).

    Google Scholar 

  11. G. F. Gause. Science, 127, 506–508 (1958).

    Google Scholar 

  12. C. C. Lindegren, S. Nagai and H. Nagai. Nature (London) 182, 446–448 (1958).

    Google Scholar 

  13. W. Bartley and L. M. Birt. Assays in Cell Metabolism. 1–44. Bartley, H. L. Kornberg, J. R. Quayle, Wiley Interscience London. (1970).

  14. H. A. Krebs, D. A. H. Bennet, P. Gasquet, T. Gascoyne, and T. Yoshida. Biochem. J. 86, 22–27 (1963).

    Google Scholar 

  15. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  16. A. Kornberg. Methods in Enzymology, P. Colowick and O. N. Kaplan. ed. Vol. 1, pp. 705–709 Academic Press, New York. (1955).

    Google Scholar 

  17. L. J. Reed and Ch. R. Willms. Methods in Enzymology. 9, 258–261. Academic Press. New York. London (1966).

    Google Scholar 

  18. E. S. Polakis, W. Bartley and G. A. Meek. Biochem. J. 97, 298–302 (1965).

    Google Scholar 

  19. R. H. Deken, J. Gen Microbiol. 44, 149–156 (1966).

    Google Scholar 

  20. R. N. Sturm, N. J. Herman and E. J. Bell, Can. J. Microbiol. 16, 817–821. (1970).

    Google Scholar 

  21. C. Gancedo, J. M. Gancedo and A. Sols. Eur. J. Biochem. 5, 165–172 (1968).

    Google Scholar 

  22. N. Entner and M. Doudoroff. J. Bio. Chem. 196, 853–862 (1952).

    Google Scholar 

  23. J. A. Hathaway and D. E. Atkinson. J. Biol. Chem. 238, 2875–2881 (1963).

    Google Scholar 

  24. L, D. Barnes, J. J. Macguire and D. E. Atkinson. Biochemistry, 11, 4322–4329 (1972).

    Google Scholar 

  25. D. Bellamy. Biochem. J. 82, 218–224 (1962).

    Google Scholar 

  26. D. H. Williamson, P. Lund and H. A. Krebs. Biochem. J. 103, 514–527 (1967).

    Google Scholar 

  27. H. A. Krebs and R. L. Weech. The Energy Level and Metabolic Control in Mitochondria. SPapa, J. M. Tager, E. Quagliariello, E. C. Slater. pp. 329–382. Adriática Editrice, Bari (1969).

    Google Scholar 

  28. H. J. Hohorst, F. H. Kreutz and T. Bücher. Biochem. Z. 332, 18–46 (1959).

    Google Scholar 

  29. H. Holzer, G. Schultz and F. Lynen. Biochem. Z. 328, 252–263 (1956).

    Google Scholar 

  30. D. Fairbairn, Biol. Rev. 45, 29–72 (1970).

    Google Scholar 

  31. J. Barrett and I. Beis. Comp. Biochem. Physiol. 44A, 331–340 (1973).

    Google Scholar 

  32. L. Ernster and F. Navazio. Exp. Cell. Ress. 11, 483–486 (1956).

    Google Scholar 

  33. C. Chapman and W. Bartley. Biochem. J. 111, 609–613 (1968).

    Google Scholar 

  34. H. D. Peck, O. H. Smith and H. Gest. Biochim. Biophys. Acta 25, 142–147 (1957).

    Google Scholar 

  35. M. G. Warringa, O. H. Smith, A. Giuditta and T. P. Singer. J. Biol. Chem. 230, 97–109 (1958).

    Google Scholar 

  36. L. W. Scheibel and H. J. Saz. Comp. Biochem. Physiol. 18, 151–162. (1966).

    Google Scholar 

  37. L. W. Scheibel and H. J. Saz and E. Buending. J. Biol. Chem. 243, 2229–2235 (1968).

    Google Scholar 

  38. W. J. Vaatstra. Hoppe-Seyler's' Z. Physiol. Che. 350, 701–709. (1969).

    Google Scholar 

  39. E. H. Lee and M. A. Fernando, Int. J. Biochem. 2, 403–408 (1971).

    Google Scholar 

  40. C. J. Malanga, and E. L. Aiello, Com. Biochem. Physiol. 433, 795–806. (1972).

    Google Scholar 

  41. A. De. Zwaan. Doctoral Thesis University of Utrecht (1971).

  42. H. D. Hoberman and L. Prosky. Biochim. Biophys. Acta, 148, 392–399 (1969).

    Google Scholar 

  43. R. A. Iles, D. Barnett, L. Strunin, J. M. Strunin, B. R. Simpson and R. D. Cohen. Clinical Sci. 42, 35–45 (1972).

    Google Scholar 

  44. M. E. Spencer and J. R. Guest. J. Bacterio, 114, 536–570 (1973).

    Google Scholar 

  45. H. J. Saz, Comp. Biochem. Physiol., 393, 627–637 (1971).

    Google Scholar 

  46. L. P. Hager and H. L. Kornberg. Biochem. J. 78, 194–198 (1961).

    Google Scholar 

  47. A. A. Herbert and J. R. Guest. Mol. Cen. Cent. 105, 182–186 (1969).

    Google Scholar 

  48. B. D. Davis, H. L. Kornberg, A. Nagler, Y. Miller and E. S. Mingioci. Federation Proc. 18, 211–215 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, A., Nuñez de Castro, I. & Mayor, F. Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker's yeast grown in a variety of hypoxic conditions. Mol Cell Biochem 6, 93–100 (1975). https://doi.org/10.1007/BF01732003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732003

Keywords

Navigation