Skip to main content
Log in

Activation of Alternative Respiration with Internal Electron Acceptor during Anaerobic Glucose Utilization in Escherichia coli Strains with Impaired Fermentation Ability

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The activation of alternative respiration with an internal electron acceptor during anaerobic glucose utilization in E. coli strains with impaired fermentation ability has been studied. It was found out that respiration processes utilizing pyruvic acid as an endogenous electron acceptor can markedly contribute to the maintenance of the anaerobic redox balance in E. coli strains deficient in mixed acid fermentation pathways. The sequential inactivation of the pathways of anaerobic dissimilation of pyruvate and impairment of the functionality of the reductive branch of the tricarboxylic acid cycle led to an increase in the contribution (from 11 to 54%) of the respiratory formation of lactic acid and alanine to the biosynthesis of the reduced products of anaerobic glucose utilization by the strains. Analysis of the enantiomeric composition of the lactic acid and alanine secreted by the strains demonstrated that D-lactate dehydrogenase (Dld), L-lactate dehydrogenase (LctD), and D-alanine dehydrogenase (DadA) participated in the biosynthesis of the respective compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Becker, J. and Wittmann, C., From systems biology to metabolically engineered cells—an omics perspective on the development of industrial microbes, Curr. Opin. Microbiol., 2018, vol. 45, pp. 180–188. https://doi.org/10.1016/j.mib.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  2. Chen, X., Zhou, L., Tian, K., et al., Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production, Biotechnol. Adv., 2013, vol. 31, no. 8, pp. 1200–1223. https://doi.org/10.1016/j.biotechadv.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  3. Neidhardt, F. and Curtiss, R., Escherichia Coli and Salmonella: Cellular and Molecular Biology, 2nd ed., Washington, DC: ASM Press, 1996.

    Google Scholar 

  4. Sauer, U. and Eikmanns, B.J., The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria, FEMS Microbiol. Rev., 2005, vol. 29, no. 4, pp. 765–794. https://doi.org/10.1016/j.femsre.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto, T., Tanaka, T., and Kondo, A., Engineering metabolic pathways in Escherichia coli for constructing a “microbial chassis” for biochemical production, Bioresour. Technol., 2017, vol. 245B, pp. 1362–1368. https://doi.org/10.1016/j.biortech.2017.05.008

    Article  CAS  Google Scholar 

  6. Unden, G. and Bongaerts, J., Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors, B-iochim. Biophys. Acta, 1997, vol. 1320, pp. 217–234. https://doi.org/10.1016/S0005-2728(97)00034-0

  7. Morzhakova, A.A., Skorokhodova, A.Yu., Gule-vich, A.Yu., and Debabov, V.G., Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced crabtree effect, Appl. Biochem. Micro-biol., 2013, vol. 49, no. 2, pp. 113–119. https://doi.org/10.7868/S0555109913020116

    Article  CAS  Google Scholar 

  8. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York, USA: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  9. Katashkina, J.I., Skorokhodova, A.Yu., Zimenkov, D.V., et al., Tuning the expression level of a gene located on a bacterial chromosome, Mol. Biol. (Moscow), 2005, vol. 39, no. 5, pp. 719–726.

  10. Datsenko, K.A. and Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U. S. A., 2000. V. 97, no. 12, pp. 6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gulevich, A.Yu, Skorokhodova, A.Yu., Ermishev, V.Yu., et al., A new method for the construction of translationally coupled operons in a bacterial chromosome, Mol. Bio-l. (Moscow), 2009, vol. 43, no. 3, pp. 505–514.

    Article  CAS  Google Scholar 

  12. Fischer, C.R., Tseng, H.C., Tai, M., et al., Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli,Appl. Microbiol. Biotechnol., 2010, vol. 88, no. 1, pp. 265–275. https://doi.org/10.1007/s00253-010-2749-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong, J.M., Taylor, J.S., Latour, D.J., et al., Three overlapping lct genes involved in L-lactate utilization by Escherichia coli,J. Bacteriol., 1993, vol. 75, no. 20, pp. 6671–6678.

    Article  Google Scholar 

  14. Wallace, B.J. and Young, I.G., Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant, Biochim. Biophys. Acta, 1977, vol. 461, no. 1, pp. 84–100.

    Article  CAS  Google Scholar 

  15. Jones, H. and Venables, W.A., Effects of solubilisation on some properties of the membrane-bound respiratory enzyme D-amino acid dehydrogenase of Escherichia coli,FEBS Lett., 1983, vol. 151, no. 2, pp. 189–192.

    Article  CAS  Google Scholar 

  16. Soini, J., Falschlehner, C., Liedert, C., et al., Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110, Microb. Cell. Fact., 2008, vol. 7, no. 30. https://doi.org/10.1186/1475-2859-7-30

  17. Zhang, Z., Gosset, G., Barabote, R., et al., Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli,J. Bacteriol., 2005, vol. 187, no. 3, pp. 980–990. https://doi.org/10.1128/JB.187.3.980-990.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Mattos, M.J., The steady-state internal redox state (NADH/ NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli,J. Bacteriol., 1999, vol. 181, no. 8, pp. 2351–2357.

    Google Scholar 

  19. Maklashina, E., Berthold, D.A., and Cecchini, G., Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth, J. Bacteriol., 1998, vol. 180, no. 22, pp. 5989–5996.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Steinsiek, S., Frixel, S., and Stagge, S., SUMO, and Bettenbrock, K., Characterization of E. coli MG1655 and frdA and sdhC mutants at various aerobiosis levels, J. Biotechnol., 2011, vol. 154, no. 1, pp. 35–45. https://doi.org/10.1016/j.jbiotec.2011.03.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by a grant from the Russian Foundation for Basic Research (project no. 18-04-01222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Skorokhodova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: cAMP, cyclic adenosine monophosphate; CL—culture liquid; Cm—chloramphenicol; CRP—cAMP receptor protein; GS—glyoxylate shunt; HPLC—high-performance liquid chromatography; NADH—nicotinamide adenine dinucleotide reduced; OAA—oxaloacetic acid; PCR—polymerase chain reaction; PEP—phosphoenolpyruvate; TCA cycle—tricarboxylic acid cycle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodova, A.Y., Sukhozhenko, A.V., Gulevich, A.Y. et al. Activation of Alternative Respiration with Internal Electron Acceptor during Anaerobic Glucose Utilization in Escherichia coli Strains with Impaired Fermentation Ability. Appl Biochem Microbiol 55, 870–876 (2019). https://doi.org/10.1134/S0003683819090072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819090072

Keywords:

Navigation