Skip to main content

Advertisement

Log in

Expression of biologically active HIV glycoproteins using a T7 RNA polymerase-based eucaryotic vector system

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Bacteriophage T7 RNA polymerase and a derivative containing a nuclear localization signal were transiently expressed in CV-1 cells and were shown to localize to the cytoplasm and nucleus, respectively. A vector was constructed containing T7 promoter and transcription terminator sequences flanking a picornaviral 5′ untranslated sequence for cap-independent translation and a polyA signal. Expression of the HIV-1 envelope glycoproteins in this vector system gave high levels of specific transcripts and translation products, independent of the subcellular localization of T7 RNA polymerase. The synthesis of HIV glycoproteins was also completely independent of the coexpression of the HIV rev protein, which is normally required for the expression of HIV structural proteins. In addition, a poly A signal was not required, whereas the presence of the picornaviral 5′ untranslated region was necessary for efficient expression. Different possibilities to account for these findings are discussed. The HIV glycoproteins synthesized in this system were normally processed and assembled; they could induce syncytium formation and complement anenv-deletion mutant of HIV-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosch V. and Pawlita M., J Virol64 2337–2344, 1990.

    Google Scholar 

  2. Chamberlin M., McGrath J., and Waskell L. Nature228 227–231, 1970.

    Google Scholar 

  3. Dunn J.J. and Studier F.W., J Mol Biol166 477–535, 1970.

    Google Scholar 

  4. Fuerst T.R., Niles E.G., Studier F.W., and Moss B., Proc Natl Acad Sci USA83 8122–8126, 1986.

    Google Scholar 

  5. Fuerst T.R., Earl P.L., and Moss B., Mol Cell Biol7 2538–2544, 1987.

    Google Scholar 

  6. Fuerst T.R. and Moss B., J Mol Biol206 333–348, 1989.

    Google Scholar 

  7. Elroy-Stein O., Fuerst T.R., and Moss B., Proc Natl Acad Sci USA86 6126–6130, 1989.

    Google Scholar 

  8. Deuschle U., Pepperkok R., Wang F., Giordano T.J., McAllister W.T., Ansorge W., and Bujard H., Proc Natl Acad Sci USA86 5400–5404, 1989.

    Google Scholar 

  9. Lieber A., Kiessling U., and Strauss M., Nucleic Acids Res17 8485–8493, 1989.

    Google Scholar 

  10. Benton B.M., Eng W.-K., Dunn J.J., Studier F.W., Sternglanz R., and Fisher P.A., Mol Cell Biol10 353–360, 1990.

    Google Scholar 

  11. Dunn J.J., Krippl B., Bernstein K.E., Westphal H., and Studier F.W., Gene68 259–266, 1988.

    Google Scholar 

  12. Felber B.K., Hadzopoulou-Cladaras M., Cladaras C., Copeland T., and Pavlakis G.N., Proc Natl Acad Sci USA86 1495–1499, 1989.

    Google Scholar 

  13. Malim M.J., Hauber J., Le S.-J., Maizel J.V., and Cullen B.R., Nature338, 254–257.

  14. Mermer B., Felber B.K., Campbell M., and Pavlakis G.N., Nucleic Acids Res18 2037–2044, 1990.

    Google Scholar 

  15. Ratner L., Haseltine W., Patarca R., Livak K.J., Starcich B., Josephs S.J., Doran E.R., Rafalski J.A., Whitehorn E.A., Baumeister K., Ivanoff L., Petteway S.R., Jr., Pearson M.L. , Lautenberg J.A., Papas T.S., Ghrayeb J., Chang N.T., Gallo R.C., and Wong-Staal F., Nature313, 277–284.

  16. Adachi A., Gendelman H.E., Koenig S., Folks T., Willey R., Rabson A., and Martin M.A., J Virol59 284–291, 1986.

    Google Scholar 

  17. Rosenberg A.H., Lade B.N., Chui S.-W., Dunn J.J., and Studier F.W., Gene56 125–135, 1987.

    Google Scholar 

  18. Parks G.D., Duke G.M., and Palmenberg A.C., J Virol60 376–384, 1986.

    Google Scholar 

  19. Zoller M.J. and Smith M., DNA3 479–488, 1984.

    Google Scholar 

  20. Döffinger R., Pawlita M., and Sczakiel G., Nucleic Acids Res16 11840, 1988.

    Google Scholar 

  21. Chomczynski P. and Sacchi N., Anal Biochem162 156–159, 1987.

    Google Scholar 

  22. Harada S., Koyanagi Y., and Yamamoto N., Science229 563–566, 1988.

    Google Scholar 

  23. Towbin H., Staehelin T., and Gordon J., Proc Natl Acad Sci USA77 5201–5205, 1979.

    Google Scholar 

  24. Jang S.-K., Kräusslich H.-G., Nicklin M.J.H., Duke G.M., Palmenberg A.C., and Wimmer E., J Virol62 2636–2643, 1988.

    Google Scholar 

  25. Jang S.-K., Davies M.V., Kaufman R.J., and Wimmer E., J Virol63 1651–1660, 1989.

    Google Scholar 

  26. Helseth E., Kowalski M., Gabuzda D., Olshevsky U., Haseltine W., and Sodroski J., J Virol64 2416–2420, 1990.

    Google Scholar 

  27. Zhou Y., Giordano T.J., Durbin R.K., and McAllister W., Mol Cell Biol10 4529–4537, 1990.

    Google Scholar 

  28. Chen W., Tabor S., and Struhl K., Cell50 1047–1055, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilk, T., Mierswa, H., Kräusslich, HG. et al. Expression of biologically active HIV glycoproteins using a T7 RNA polymerase-based eucaryotic vector system. Virus Genes 6, 229–246 (1992). https://doi.org/10.1007/BF01702562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01702562

Key words

Navigation