Skip to main content

Advertisement

Log in

Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors—the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120–150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mortlock, A., Low, W., & Crisanti, A. (2003). Suppression of gene expression by a cell-permeable Tet repressor. Nucleic Acids Research, 31, e152.

    Article  Google Scholar 

  2. Zhang, H., Ma, Y., Gu, J., Liao, B., Li, J., Wong, J., et al. (2012). Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors. Biomaterials, 33, 5047–5055.

    Article  CAS  Google Scholar 

  3. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    Article  CAS  Google Scholar 

  4. Kim, D., Kim, C.-H., Moon, J.-I., Chung, Y.-G., Chang, M.-Y., Han, B.-S., et al. (2010). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.

    Article  Google Scholar 

  5. Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K., & Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 24, 1020–1027.

    Article  CAS  Google Scholar 

  6. Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P., Bessen, J. L., Hu, J. H., et al. (2014). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33, 73–80.

    Article  Google Scholar 

  7. Liu, J., Gaj, T., Patterson, J. T., Sirk, S. J., & Barbas, C. F. (2014). Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS ONE, 9, e85755.

    Article  Google Scholar 

  8. Liu, J., Gaj, T., Wallen, M. C., & Barbas, C. F. (2015). Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Molecular Therapy Acids, 4, e232.

    Article  CAS  Google Scholar 

  9. Lee, C.-Y., Li, J.-F., Liou, J.-S., Charng, Y.-C., Huang, Y.-W., & Lee, H.-J. (2011). A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials, 32, 6264–6276.

    Article  CAS  Google Scholar 

  10. Järver, P., Fernaeus, S., El-Andaloussi, S., Tjörnhammar, M. L. & Langel, Ü. (2008). Co-transduction of sleeping beauty transposase and donor plasmid via a cell-penetrating peptide: A simple one step method. International Journal of Peptide Research and Therapeutics, 14, 58–63.

    Article  Google Scholar 

  11. Patsch, C., Peitz, M., Otte, D. M., Kesseler, D., Jungverdorben, J., Wunderlich, F. T., et al. (2010). Engineering cell-permeant FLP recombinase for tightly controlled inducible and reversible overexpression in embryonic stem cells. Stem Cells, 28, 894–902.

    CAS  Google Scholar 

  12. Jo, D., Nashabi, A., Doxsee, C., Lin, Q., Unutmaz, D., Chen, J., et al. (2001). Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nature Biotechnology, 19, 929–933.

    Article  CAS  Google Scholar 

  13. Justesen, S., Buus, S., Claesson, M. H., & Pedersen, A. E. (2007). Addition of TAT protein transduction domain and GrpE to human p53 provides soluble fusion proteins that can be transduced into dendritic cells and elicit p53-specific T-cell responses in HLA-A*0201 transgenic mice. Immunology, 122, 326–334.

    Article  CAS  Google Scholar 

  14. Varkouhi, A. K., Scholte, M., Storm, G., & Haisma, H. J. (2011). Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 151, 220–228.

    Article  CAS  Google Scholar 

  15. van den Berg, A., & Dowdy, S. F. (2011). Protein transduction domain delivery of therapeutic macromolecules. Current Opinion in Biotechnology, 22, 888–893.

    Article  Google Scholar 

  16. Yamaguchi, K., Inoue, M., & Goshima, N. (2011). Efficient protein transduction method using cationic peptides and lipids. Journal of Biomedicine and Biotechnology, 2011, 872065.

    Article  Google Scholar 

  17. Erazo-Oliveras, A., Muthukrishnan, N., Baker, R., Wang, T. Y., & Pellois, J. P. (2012). Improving the endosomal escape of cell-penetrating peptides and their cargos: Strategies and challenges. Pharmaceuticals, 5, 1177–1209.

    Article  CAS  Google Scholar 

  18. Cicalese, M. P., & Aiuti, A. (2015). Clinical applications of gene therapy for primary immunodeficiencies. Human Gene Therapy, 26, 210–219.

    Article  CAS  Google Scholar 

  19. Oldham, R. A., Berinstein, E. M., & Medin, J. A. (2015). Lentiviral vectors in cancer immunotherapy. Immunotherapy, 7, 271–284.

    Article  CAS  Google Scholar 

  20. Bayart, E., & Cohen-Haguenauer, O. (2013). Technological overview of iPS induction from human adult somatic cells. Current Gene Therapy, 13, 73–92.

    Article  CAS  Google Scholar 

  21. Luo, T., Douglas, J. L., Livingston, R. L., & Garcia, J. V. (1998). Infectivity enhancement by HIV-1 Nef is dependent on the pathway of virus entry: implications for HIV-based gene transfer systems. Virology, 241, 224–233.

    Article  CAS  Google Scholar 

  22. Cai, Y., & Mikkelsen, J. G. (2014). Driving DNA transposition by lentiviral protein transduction. Mobile Genetic Elements, 4, e29591.

    Article  Google Scholar 

  23. Carlson, L. A., Briggs, J. A. G., Glass, B., Riches, J. D., Simon, M. N., Johnson, M. C., et al. (2008). Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe, 4, 592–599.

    Article  CAS  Google Scholar 

  24. Bell, N. M., & Lever, A. M. L. (2013). HIV Gag polyprotein: processing and early viral particle assembly. Trends in Microbiology, 21, 136–144.

    Article  CAS  Google Scholar 

  25. Jalaguier, P., Turcotte, K., Danylo, A., Cantin, R., & Tremblay, M. J. (2011). Efficient production of HIV-1 virus-like particles from a mammalian expression vector requires the N-terminal capsid domain. PLoS ONE, 6, e28314.

    Article  CAS  Google Scholar 

  26. Crist, R. M., Datta, S. A. K., Stephen, A. G., Soheilian, F., Mirro, J., Fisher, R. J., et al. (2009). Assembly properties of human immunodeficiency virus type 1 Gag-leucine zipper chimeras: implications for retrovirus assembly. Journal of Virology, 83, 2216–2225.

    Article  CAS  Google Scholar 

  27. Accola, M. A., Strack, B., & Göttlinger, H. G. (2000). Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. Journal of Virology, 74, 5395–5402.

    Article  CAS  Google Scholar 

  28. Lee, S. K., Potempa, M., & Swanstrom, R. (2012). The choreography of HIV-1 proteolytic processing and virion assembly. Journal of Biological Chemistry, 287, 40867–40874.

    Article  CAS  Google Scholar 

  29. Aoki, T., Shimizu, S., Urano, E., Futahashi, Y., Hamatake, M., Tamamura, H., et al. (2010). Improvement of lentiviral vector-mediated gene transduction by genetic engineering of the structural protein Pr55 Gag. Gene Therapy, 17, 1124–1133.

    Article  CAS  Google Scholar 

  30. Aoki, T., Miyauchi, K., Urano, E., Ichikawa, R., & Komano, J. (2011). Protein transduction by pseudotyped lentivirus-like nanoparticles. Gene Therapy, 18, 936–941.

    Article  CAS  Google Scholar 

  31. Uhlig, K. M., Schülke, S., Scheuplein, V. A., Malczyk, A. H., Reusch, J., Kugelmann, S., et al. (2015). Lentiviral protein transfer vectors are an efficient vaccine-platform inducing strong antigen-specific cytotoxic T cell response. Journal of Virology, 89, 9044–9060.

    Article  CAS  Google Scholar 

  32. Cai, Y., Bak, R. O., Krogh, L. B., Staunstrup, N. H., Moldt, B., Corydon, T. J., et al. (2014). DNA transposition by protein transduction of the piggyBac transposase from lentiviral Gag precursors. Nucleic Acids Research, 42, e28.

    Article  CAS  Google Scholar 

  33. Miyauchi, K., Urano, E., Takizawa, M., Ichikawa, R., & Komano, J. (2012). Therapeutic potential of HIV protease-activable CASP3. Scientific Reports, 2, 1–7.

    Article  Google Scholar 

  34. Müller, B., Daecke, J., Fackler, O. T., Dittmar, T., Zentgraf, H., Kräusslich, H., et al. (2004). Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. Journal of Virology, 78, 10803–10813.

    Article  Google Scholar 

  35. Voelkel, C., Galla, M., Maetzig, T., Warlich, E., Kuehle, J., Zychlinski, D., et al. (2010). Protein transduction from retroviral Gag precursors. Proceedings of the National Academy of Sciences USA, 107, 7805–7810.

    Article  CAS  Google Scholar 

  36. Kaczmarczyk, S. J., Sitaraman, K., Young, A. H., Hughes, S. H., & Chatterjee, D. K. (2011). Protein delivery using engineered virus-like particles. Proceedings of the National Academy of Sciences, 41, 16998–17003.

    Article  Google Scholar 

  37. Wu, D. T., & Roth, M. J. (2014). MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials, 35, 8416–8426.

    Article  CAS  Google Scholar 

  38. Broussau, S., Jabbour, N., Lachapelle, G., Durocher, Y., Tom, R., Transfiguracion, J., et al. (2008). Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Molecular Therapy, 16, 500–507.

    Article  CAS  Google Scholar 

  39. Massie, B., Mosser, D. D., Koutroumanis, M., Vitté-Mony, I., Lamoureux, L., Couture, F., et al. (1998). New adenovirus vectors for protein production and gene transfer. Cytotechnology, 28, 53–64.

    Article  CAS  Google Scholar 

  40. Cressman, D. E., O’Connor, W. J., Greer, S. F., Zhu, X. S., & Ting, J. P. (2001). Mechanisms of nuclear import and export that control the subcellular localization of class II transactivator. The Journal of Immunology, 167, 3626–3634.

    Article  CAS  Google Scholar 

  41. Mullick, A., Xu, Y., Warren, R., Koutroumanis, M., Guilbault, C., Broussau, S., et al. (2006). The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnology, 6, 43.

    Article  Google Scholar 

  42. Güttler, T., Madl, T., Neumann, P., Deichsel, D., Corsini, L., Monecke, T., et al. (2010). NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nature Structural & Molecular Biology, 17, 1367–1376.

    Article  Google Scholar 

  43. Gaillet, B., Gilbert, R., Broussau, S., Pilotte, A., Malenfant, F., Mullick, A., et al. (2010). High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Biotechnology and Bioengineering, 106, 203–215.

    CAS  Google Scholar 

  44. Robert, M. A., Lin, Y., Bendjelloul, M., Zeng, Y., Dessolin, S., Broussau, S., et al. (2012). Strength and muscle specificity of a compact promoter derived from the slow troponin I gene in the context of episomal (gutless adenovirus) and integrating (lentiviral) vectors. The Journal of Gene Medicine, 14, 746–760.

    Article  CAS  Google Scholar 

  45. Chabaud, S., Sasseville, A. J.-M., Elahi, S. M., Caron, A., Dufour, F., Massie, B., et al. (2007). The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function. Journal of General Virology, 88, 384–394.

    Article  CAS  Google Scholar 

  46. Alain, R., Nadon, F., Seguin, C., Payment, P., & Trudel, M. (1987). Rapid virus subunit visualization by direct sedimentation of samples on electron microscope grids. Journal of Virological Methods, 16, 209–216.

    Article  CAS  Google Scholar 

  47. Finkelshtein, D., Werman, A., Novick, D., Barak, S., & Rubinstein, M. (2013). LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proceedings of the National Academy of Sciences USA, 110, 7306–7311.

    Article  CAS  Google Scholar 

  48. Aiken, C. (1997). Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. Journal of Virology, 71, 5871–5877.

    CAS  Google Scholar 

  49. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., et al. (1998). A third-generation lentivirus vector with a conditional packaging system. Journal of Virology, 72, 8463–8471.

    CAS  Google Scholar 

  50. Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J., & Varmus, H. E. (1988). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature, 331, 280–283.

    Article  CAS  Google Scholar 

  51. Kutner, R. H., Zhang, X.-Y., & Reiser, J. (2009). Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nature Protocols, 4, 495–505.

    Article  CAS  Google Scholar 

  52. Cervera, L., Gutiérrez-Granados, S., Martínez, M., Blanco, J., Gòdia, F., & Segura, M. M. (2013). Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. Journal of Biotechnology, 166, 152–165.

    Article  CAS  Google Scholar 

  53. Venereo-Sanchez, A., Gilbert, R., Simoneau, M., Caron, A., Chahal, P. S., Chen, W., et al. (2016). Hemagglutinin and neuraminidase containing virus-like particles produced in HEK-293 suspension culture: An effective influenza vaccine candidate. Vaccine, 34, 3371–3380.

    Article  CAS  Google Scholar 

  54. Cai, Y., Bak, R. O., & Mikkelsen, J. G. (2014). Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. Elife, 3, e01911.

    Article  Google Scholar 

  55. Haffar, O. K., Popov, S., Dubrovsky, L., Agostini, I., Tang, H., Pushkarsky, T., et al. (2000). Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. Journal of Molecular Biology, 299, 359–368.

    Article  CAS  Google Scholar 

  56. Gamper, A. M., Qiao, X., Kim, J., Zhang, L., De Simone, M. C., Rathmell, W. K., et al. (2012). Regulation of KLF4 turnover reveals an unexpected tissue-specific role of pVHL in tumorigenesis. Molecular Cell, 45, 233–243.

    Article  CAS  Google Scholar 

  57. Chen, Z. Y., Wang, X., Zhou, Y., Offner, G., & Tseng, C. C. (2005). Destabilization of Krüppel-like factor 4 protein in response to serum stimulation involves the ubiquitin-proteasome pathway. Cancer Research, 65, 10394–10400.

    Article  CAS  Google Scholar 

  58. Wang, Y., Chen, J., Hu, J.-L., Wei, X.-X., Qin, D., Gao, J., et al. (2011). Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Reports, 12, 373–378.

    Article  CAS  Google Scholar 

  59. Negrete, A., Pai, A., & Shiloach, J. (2014). Use of hollow fiber tangential flow filtration for the recovery and concentration of HIV virus-like particles produced in insect cells. Journal of Virological Methods, 195, 240–246.

    Article  CAS  Google Scholar 

  60. Yang, L., Song, Y., Li, X., Huang, X., Liu, J., Ding, H., et al. (2012). HIV-1 virus-like particles produced by stably transfected drosophila S2 Cells: a desirable vaccine component. Journal of Virology, 86, 7662–7676.

    Article  CAS  Google Scholar 

  61. Urano, E., Aoki, T., Futahashi, Y., Murakami, T., Morikawa, Y., Yamamoto, N., et al. (2008). Substitution of the myristoylation signal of human immunodeficiency virus type 1 Pr55Gag with the phospholipase C-δ1 pleckstrin homology domain results in infectious pseudovirion production. Journal of General Virology, 89, 3144–3149.

    Article  CAS  Google Scholar 

  62. Gutiérrez-Granados, S., Cervera, L., Gòdia, F., & Segura, M. (2013). Characterization and quantitation of fluorescent Gag virus-like particles. BMC Proceedings, 7, P62.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a NSERC/CIHR jointed grant #315642. M.-A.R. was supported by grants from ThéCell and PROTÉO networks. The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Gaillet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert, MA., Lytvyn, V., Deforet, F. et al. Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering. Mol Biotechnol 59, 9–23 (2017). https://doi.org/10.1007/s12033-016-9987-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9987-1

Keywords

Navigation