Skip to main content
Log in

A semiempirical calculation of electronic structure of multiple CdS-based clusters

  • Regular Papers
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The electronic structure of (Cd x S y ) n clusters, wherex, y≤16 andn≤8, is calculated using the Extended Hückel method with charge and configuration selfconsistence. Variations of charge distribution, energy level structure, stability, etc. as the result of coupling of single Cd x S y , clusters with different intercluster distance are analysed. This coupling has a pronounced effect upon orbital energies and HOMO-LUMO difference at small intercluster distances. In contrast, atomic charges are close for double and single clusters. The coupling effects quickly fall down with intercluster distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bate R.T.: Nanotechnology1 (1990) 1.

    Google Scholar 

  2. Kelly M.J.: Semicond. Sci. Technol.5 (1991) 1209.

    Google Scholar 

  3. Brus L.E.: Adv. Mater.5 (1993) 286.

    Google Scholar 

  4. Que W., Kirczenow G., and Castaño E.: Phys. Rev. B43 (1988) 14079.

    Google Scholar 

  5. Demel T., Heitmann D., Grambow P., and Ploog K.: Phys. Rev. Lett.64 (1990) 788.

    Google Scholar 

  6. Wang Y., Suna A., Mahler W., and Kasowski R.: J. Chem. Phys.87 (1987) 7315.

    Google Scholar 

  7. Lippens P.E. and Lannoo M.: Phys. Rev. B39 (1989) 10935.

    Google Scholar 

  8. Graves R.M. and Scuseria G.E.: J. Chem. Phys.95 (1991) 6602.

    Google Scholar 

  9. Lou L., Nordlander P., and Smalley R.E.: J. Chem. Phys.97 (1992) 1858.

    Google Scholar 

  10. Marini M. M., Sawamura M., Ermler W.C.: Chem. Phys. Lett.163 (1989) 202.

    Google Scholar 

  11. Sawamura M. and Ermler W.C.: J. Phys. Chem.94 (1990) 7805.

    Google Scholar 

  12. RamaKrishna M.V. and Friesner R.A.: J. Chem. Phys.95 (1991) 8309.

    Google Scholar 

  13. Hill N.A. and Whaley K.B.: J. Chem. Phys.99 (1993) 3707.

    Google Scholar 

  14. Al-Laham M.A. and Raghavachami K.: J. Chem. Phys.98 (1991) 8770.

    Google Scholar 

  15. Al-Laham M.A. and Raghavachami K.: Chem. Phys. Lett.187 (1991) 13.

    Google Scholar 

  16. Seitsonen A.P., Puska M.J., Alatalo M., Nieminen R.M., Milman V., and Payne M.C.: Phys. Rev. B48 (1993) 1981.

    Google Scholar 

  17. Gubanov V.A. and Medvedeva N.I.: Physica B172 (1991) 285.

    Google Scholar 

  18. Hagfeldt A., Bergström R., Siegbahn H.O.G., and Luhell S.: J. Phys. Chem.97 (1993) 12725.

    Google Scholar 

  19. Flad J., Stoll H., Nicklass A., and Preuss H.: Z. Phys. D15 (1990) 79.

    Google Scholar 

  20. Gurin V.S.: J. Phys.: Condens. Matter6 (1994) 8691.

    Google Scholar 

  21. Clementi E. and Roetti C.: Atomic Data and Nuclear Data Tables14 (1974) 177.

    Google Scholar 

  22. Boča R., Hajko P., Benco L., Benkovský I., and Faktor D.: Czech. J. Phys.43 (1993) 813.

    Google Scholar 

  23. Vogl P., Hjalmanson H. P., and Dow J.D.: J. Phys. Chem. Solids44 (1983) 365.

    Google Scholar 

  24. Seel M.: Int. J. Quantum Chem.: Quantum Chem. Symp.22 (1988) 265.

    Google Scholar 

  25. Terasawa H., Kambara T., Gondaira K. I., Teranishi T., and Sato K.: J. Phys. C13 (1980) 5615.

    Google Scholar 

  26. Yoffee A.D.: Adv. Phys.42 (1993) 173.

    Google Scholar 

  27. Xu Y. and Ching Y.: Phys. Rev. B48 (1993) 1335.

    Google Scholar 

  28. Dasso C.H. and Vitturi A.: Phys. Rev. B44 (1993) 2699.

    Google Scholar 

  29. Ziman J.M.: Models of Disorder. Cambridge University Press, Cambridge (1979).

    Google Scholar 

  30. Wang Y. and Herron N.: J. Phys. Chem.95 (1991) 525.

    Google Scholar 

  31. Choi K.M. and Shea K.J.: J. Phys. Chem.98 (1994) 3207.

    Google Scholar 

  32. Grieser F., Furlong D.N., and Scoberg D.: J. Chem. Soc. Faraday Trans.88 (1992) 2007.

    Google Scholar 

  33. Hirao K., Iijima S., and Nasu H.: J. Non-Cryst. Solids134 (1991) 233.

    Google Scholar 

  34. Kotov N.A., Meldrum F.C., Wu C., and Fendler J.H.: J. Phys. Chem.98 (1994) 2735.

    Google Scholar 

  35. Bányai L. and Koch S.W.: Semiconductor quantum dots. World Scientific: Singapore, etc. (1993).

    Google Scholar 

  36. Herman M.A.: Semiconductor Superlattices. Akademie-Verlag, Berlin (1986).

    Google Scholar 

  37. Juang C., Hwang R.Y., Pan H.C., Chang C., and Lee B.J.: J. Appl. Phys.70 (1991) 4973.

    Google Scholar 

  38. Chan X.Ch. and Tada K.: IEEE J. Quantum Electronics27 (1991) 702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was performed under partial support of Fundamental Research Foundation of Belarus. The author thanks the referee for the valuable remark on a possible source of weak cluster-cluster interaction included in Discussion of the revised version.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurin, V.S. A semiempirical calculation of electronic structure of multiple CdS-based clusters. Czech J Phys 45, 1115–1123 (1995). https://doi.org/10.1007/BF01692003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01692003

Keywords

Navigation