Skip to main content
Log in

Reciprocal interactions between α2-adrenoceptor agonist and neuropeptide Y binding sites in the nucleus tractus solitarius of the rat

A biochemic and autoradiographic analysis

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Interactions between a α2-adrenoreceptor agonist and neuropeptide Y (NPY) binding sites have been studied in the rat medulla oblongata (MO) using biochemical binding techniques as well as quantitative autoradiography. Tritiated para-amino clonidine (3H-PAC; α2-adrenoceptor agonist), idazoxan (3H-IDA; α2-adrenoceptor antagonist) and iodinated neuropeptide Y (125I-NPY) were used as radioligands. (1) Neuropeptide Y (NPY; 10−8M) but not bovine pancreatic polypeptide (BPP) nor peptide YY (PYY 10nM) increased the KD value of3H-PAC binding sites. However, intraventricular administration of a high dose of NPY (1.25nmol) did not change the3H-PAC binding characteristics in MO membrane preparations of these animals. (2) GTP 10−4 lowered the affinity of3H-PAC binding. NPY (10 nM) had no additional effect, nor did NPYinfluence the GTP induced shift in potency of clonidine to displace3H-IDA from its binding sites. (3) In the autoradiographical experiments NPY (10nM) significantly reduced3H-PAC binding (2nM) in the nucleus tractus solitarius (NTS) area by 35%. (4) When clonidine, either given centrally in vivo (3.75nmol) or in vitro (10 nM) the binding of125I-NPY was reduced (34 and 24%, respectively) in the NTS. When the monoamine receptors were irreversibly blocked in vivo by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ, 10 μg i.e. 24h)125I-NPY (0.5 nM) binding was increased by 137% in the NTS. This effect of EEDQ was prevented by pretreatment with the α2-adrenoreceptor antagonist idazoxan.

These results provide support for a direct intramembrane interaction between the α2-receptor and the NPY receptor within the NTS and may be of importance in central cardiovascular regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler CH, Meller E, Goldstein M (1985) Recovery of α2-adrenoceptor binding and function after irreversible inactivation by N-ethoxy-carbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). Eur J Pharmacol 116: 175–178

    Google Scholar 

  • Adrian TE, Allen JM, Bloom SR, Ghatei MA, Rossor MN, Roberts GW, Crow TJ, Tatemoto K, Polak JM (1933) Neuropeptide Y distribution in human brain. Nature 306: 584–586

    Google Scholar 

  • Agnati LF, Fuxe K, Benfenati F, Battistini N, Härfstrand A, Tatemoto K, Hökfelt T, Mutt V (1983 a) Neuropeptide Y in vitro selectively increases the number of α2-adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiol Scand 118: 293–295

    Google Scholar 

  • Agnati LF, Fuxe K, Benfenati F, Battistini N, Härfstrand A, Hökfelt T, Cavicchioli L, Tatemoto K, Mutt V (1983 b) Failure of neuropeptide Y in vitro to increase the number of binding sites in membranes of the medulla oblongata of the spontaneously hypertensive rat. Acta Physiol Scand 119: 309–312

    Google Scholar 

  • Agnati LF, Fuxe K, Benfenati F, Zini I, Zoli M, Fabbri L, Härfstrand A (1984) Computer assisted morphometry and microdensitometry of transmitter identified neurons with special reference to the mesostriatal dopamine pathway. I. Methodological aspects. Acta Physiol Scand [Suppl] 532: 5–36

    Google Scholar 

  • Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM (1983) Neuropeptide Y distribution in the rat brain. Science 221: 877–879

    Google Scholar 

  • Belleau B, Martel R, Lacasse G, Ménard M, Weinberg NL, Perron YG (1968) N-carboxylic acid esters of 1,2- and 1,4-dihydroquinolines. A new class of erreversible inactivators of the catecholamine α receptors and potent central nervous depressants. J Am Chem Soc 90: 823–824

    Google Scholar 

  • Benfenati F, Cimino M, Agnati LF, Fuxe K (1986) Quantitative autoradiography of central neurotransmitter receptors: methodoligical and statistical aspects with special reference to computerassisted image analysis. Acta Physiol Scand 128: 129–146

    Google Scholar 

  • Bolme P, Corrodi H, Fuxe K, Hökfelt T, Lidbrink P, Goldstein M (1974) Possible involvement of central adrenaline neurons in vasomotor and respiratory control. Studies with clonidine and its interactions with piperoxane and yohimbine. Eur J Pharmacol 28: 89–94

    Google Scholar 

  • Boulton AA, Baker GB, Hrdina PD (1986) Neuromethods, vol 4, receptor binding. Humana Press, Clifton, NJ

    Google Scholar 

  • Broomé M, Hökfelt T, Terenius L (1985) Peptide YY (PYY)-immunoreactive neurons in the lower brain stem and spinal cord of rat. Acta Physiol Scand 125: 349–352

    Google Scholar 

  • Changeux JP, Devillers-Thiéry A, Chemouilli P (1984) The acetylcholine receptor: an allosteric protein engaged in intercellular communication. Science 225: 1335–1345

    Google Scholar 

  • Chapleo CB, Doxey JC, Meyers PL, Roach AG (1981) RX 781094, a new potent, selective antagonist of α2-adrenoreceptors. Br J Pharmacol 74: 842

    Google Scholar 

  • Chapleo CB, Doxey JC, Meyers PL, Roach H Jr, Yaksh TL (1985) (3H)p-aminoclonidine binding to multiple α2-adrenoceptor sites in homogenates of cat frontal cortex and cat spinal chord. Eur J Pharmacol 106: 547–559

    Google Scholar 

  • Cummins JT, von Euler G, Fuxe K, Ögren SO, Agnati LF (1987) Chronic imipramine treatment reduces (+)2(125I)iodolysergic acid diethylamide but no125I-neuropeptide Y binding in layer IV of rat cerebral cortex. Neurosci Lett 75: 152–156

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl] 62: 1–55

    Google Scholar 

  • De Quidt ME, Emson PC (1986) Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system-II. Immunohistochemical analysis. Neuroscience 18: 545–618

    Google Scholar 

  • Doxey JC, Roach AG, Smith CFC (1983) Studies on RX 781094: a selective, potent and specific antagonist of α2-adrenoceptors. Br J Pharmacol 78: 489–505

    Google Scholar 

  • Everitt BJ, Hökfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M (1984) Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11: 443–462

    Google Scholar 

  • Fredholm BB, Jansen I, Edvinsson L (1985) Neuropeptide Y is a potent inhibitor of cAMP accumulation in feline cerebral vessels. Acta Physiol Scand 124: 467–469

    Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine containing neurons in the central nervous system IV. The distribution of monoamine containing neurons in the central nervous system. Acta Physiol Scand 64 [Suppl] 247: 39–85

    Google Scholar 

  • Fuxe K, Hökfelt T, Bolme P, Goldstein M, Johansson O, Jonsson G, Lidbrink P, Ljungdahl Å, Sachs C (1975) The topography of central catecholamine pathways in relation to their possible role in blood pressure control. In: Davies DS, Reid JS (eds) Central action of drugs in blood pressure regulation. Pitman Medical, London, pp 8–22

    Google Scholar 

  • Fuxe K, Agnati L, Härfstrand A, Zini I, Tatemoto K, Merlo Pick E, Hökfelt T, Mutt V, Terenius L (1983 a) Central administration of neuropeptide Y induces hypotension, bradypnea and EEG synchronization in the rat. Acta Physiol Scand 118: 189–192

    Google Scholar 

  • Fuxe K, Agnati LF, Benfenati F, Celani M, Zini I, Zoli M, Mutt V (1983 b) Evidence for receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm [Suppl] 18: 165–179

    Google Scholar 

  • Fuxe K, Calza L, Benfenati F, Zini I, Agnati LF (1983 c) Quantitative autoradiographic localization of (3H)imipramine binding sites in the brain of the rat: Relationship to ascending 5-hydroxytryptamine neuron systems. Proc Natl Acad Sci USA 80: 3836–3840

    Google Scholar 

  • Fuxe K, Agnati LF, Härfstrand A, Martire M, Goldstein M, Grimaldi R, Bernardi P, Zini I, Tatemoto K, Mutt V (1984) Evidence for a modulation by neuropeptide Y of the α-2 adrenergic transmission line in central adrenaline synapses. New possibilities for treatment of hypertensive disorders. Clin Exp Hypertens [A] 6: 1951–1956

    Google Scholar 

  • Fuxe K, Agnati LF (1985) Receptor-receptor interactions in the central nervous system. Med Res Rev 5: 441–482

    Google Scholar 

  • Fuxe K, Agnati LF, Härfstrand A, Zoli M, Janson AM (1985) Image analysis and the determination of codistribution and coexistence of neuroactive substances in nerve terminal populations. Acta Stereol 4: 181–186

    Google Scholar 

  • Fuxe K, Agnati LF, Härfstrand A, Janson AM, Neumeyer A, Andersson K, Ruggeri M, Zoli M, Goldstein M (1986) Morphofunctional studies on the neuropeptide Y/adrenaline costoring terminal systems in the dorsal cardiovascular region of the medulla oblongata. Focus on receptor-receptor interactions in cotransmission. Prog Brain Res 68: 303–320

    Google Scholar 

  • Glossmann H, Prasek P (1979) Alpha-noradrenergic receptors in brain membranes: sodium, magnesium and guanyl nucleotides modulate agonist binding. Naunyn Schmiedebergs Arch Pharmacol 306: 67–73

    Google Scholar 

  • Glossmann H, Hornung R (1980) Alpha2-adrenoceptors in brain: the divalent cation site. Naunyn Schmiedebergs Arch Pharmacol 314: 101–109

    Google Scholar 

  • Goldstein M, Kusano N, Adler C, Meller E (1986) Characterization of central neuropeptide Y receptor binding sites and possible interactions with α2-adrenoceptors. Prog Brain Res 68: 331–336

    Google Scholar 

  • Greengard P, Robison GA (1985) Advanced in cyclic nucleotide and protein phosphorylation research. Raven Press, New York

    Google Scholar 

  • Hamblin MW, Creese I (1983) Behavioral and radioligand binding evidence for irreversible dopamine receptor blockade by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinoline. Life Sci 32: 2247–2255

    Google Scholar 

  • Heller H (1933) Über die zentrale Blutdruckwirkung des Adrenalins. Naunyn Schmiedebergs Arch Exp Pathol 173: 291–300

    Google Scholar 

  • Hill AV (1909) The mode of action of nicotine and curari determined by the form of the contraction curve and the method of temperature coefficients. J Physiol (Lond) 39: 361–373

    Google Scholar 

  • Hollander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  • Härfstrand A, Fuxe K, Agnati LF, Ganten D, Eneroth P, Tatemoto K, Mutt V (1984) Studies on Neuropeptide-Y catecholamine interactions in central cardiovascular regulation in the α-chloralose anaesthetized rat. Evidence for a possible new way of activating the α-2 adrenergic transmission line. Clin Exp Hypertens [A] 6: 1947–1950

    Google Scholar 

  • Härfstrand A (1986) Intraventricular administration of neuropeptide Y (NPY) induces hypotension, bradycardia and bradypnoea in the awake unrestrained male rat. Counteraction by NPY-induced feeding behaviour. Acta Physiol Scand 128: 121–123

    Google Scholar 

  • Härfstrand A, Fuxe K, Agnati L, Benfenati F, Goldstein M (1986) Receptor autoradiographical evidence for high densities of125I-Neuropeptide Y binding sites in the nucleus tractus solitaruus of the normal male rat. Acta Physiol Scand 128: 195–200

    Google Scholar 

  • Härfstrand A (1987) Brain neuropeptide Y mechanisms. Basic aspects and involvement in cardiovascular and neuroendocrine regulation. Acta Physiol Scand 131 [Suppl] 565: 1–83

    Google Scholar 

  • Härfstrand A, Kalia M, Terenius L, Fuxe K (1987 a) Neuropeptide Y immunoreactive pericarya and nerve terminals in the rat medulla oblongata. Relationship to cytoarchitecture and catecholaminergic cell groups. J Comp Neurol 260: 20–35

    Google Scholar 

  • Härfstrand A, Fuxe K, Agnati L, Kitayama I, Cintra A, Janson AM, Kalia M, Vanderhaegen JJ, Goldstein M, Terenius L (1987 b) Intracisternal administration of cholecystokinin-8 counteracts the central cardiovascular effects of adrenaline and NPY. A study based on the coexistence of cholecystokinin, phenylethanolamine N-methyltransferase and neuropeptide Y imrminoreactivity in neurons of the nucleus tractus solitarius. Neurochem Int 10: 481–494

    Google Scholar 

  • Härfstrand A, Fuxe K (1987 c) Simultaneous central administration of adrenaline and neuropeptide Y leads to antagonistic interactions in vasodepressor responses in awake male rats. Acta Physiol Scand 130: 529–531

    Google Scholar 

  • Härfstrand A, Fredholm B, Fuxe K (1987 c) Inhibitory effects on cyclic AMP accumulation in slices of the nucleus tractus solitarius. Neurosci Lett 76: 185–190

    Google Scholar 

  • Härfstrand A, Fuxe K, Agnati L, Kitayama I, Cintra A, Janson AM, Kalia M, Vanderhaeghen Goldstein M, Terenius L (1987 a) Intracisternal administration of cholecystokinin-8 counteracts the central cardiovascular effects of adrenaline and NPY. A study based on the coexistence of cholecystokinin, phenylethanolamine N-methyltransferase and neuropeptide Y immunoreactivity in neurons of the nucleus tractus solitarius. Neurochem Int 104: 481–494

    Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johansson O (1973) Evidence for adrenaline neurons in the rat brain. Acta Physiol Scand 89: 286–288

    Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66: 235–251

    Google Scholar 

  • Hökfelt T, Lundberg JM, Tatemoto K, Mutt V, Terenius L, Polak J, Bloom S, Sasek Elde R, Goldstein M (1983 a) Neuropeptide Y (NPY) and FMRF amide neuropeptide-like immunoreactivities in catecholamine neurons of the rat medulla oblongata. Acta Physiol Scand 117: 315–318

    Google Scholar 

  • Hökfelt T, Lundberg JM, Lagerkrantz H, Tatemoto K, Mutt V, Terenius L, Everitt BJ, Fuxe K, Agnati LF, Goldstein M (1983 b) Occurrence of neuropeptide Y (NPY)-like immunoreactivity in catecholamine neurons in human medulla oblongata. Neurosci Lett 36: 217–222

    Google Scholar 

  • Hökfelt T, Everitt BJ, Fuxe K, Kalia K, Agnati LF, Johansson O, Härfstrand A, Lundberg JM, Terenius L, Theodorsson-Norheim E, Goldstein M (1984 a) Transmitter and peptide systems in areas involved in the control of blood pressure. Clin Exp Hypertens [A] 6: 23–41

    Google Scholar 

  • Hökfelt T, Johansson O, Goldstein M (1984 b) Central catecholamine neurons as revealed by immunohistochemistry with special reference to adrenaline neurons. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2, classical transmitters in the CNS. Elsevier, Amsterdam, pp 157–276

    Google Scholar 

  • Jacobs KH (1985) Coupling mechanisms of α-2 adrenoreceptors. J Cardiovasc Pharmacol 7 [Suppl] 6: 109–112

    Google Scholar 

  • Kalia M, Sullivan M (1980) Brain stem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211: 248–264

    Google Scholar 

  • Kalia M (1981) Localization of aortic and carotid baroreceptor and chemoreceptor primary afferents in the brain stem. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven Press, New York, pp 9–24

    Google Scholar 

  • Kalia M, Fuxe K, Goldstein M (1985 a) Rat medulla oblongata II. Dopaminergic, noradrenergic (A 1 and A 2) and adrenergic neurons, nerve fibers and presumptive terminal prosesses. J Comp Neurol 233: 308–332

    Google Scholar 

  • Kalia M, Fuxe K, Goldstein M (1985 b) Rat medulla oblongata III. Adrenergic (C1 and C2) neurons, nerve fibers and presumptive terminal processes. J Comp Neurol 233: 333–349

    Google Scholar 

  • Kassis S, Olasmaa M, Terenius L, Fishmann PH (1987) Neuropeptide Y inhibits cardiac adenylate cyclase through a pertussis toxinsensitive G protein. J Biol Chem 26/8: 3429–3431

    Google Scholar 

  • Kobinger W (1978) Central α-adrenergic systems as targets for hypotensive drugs. Rev Physiol Biochem Pharmacol 81: 39–100

    Google Scholar 

  • Kubo T, Misu Y (1981) Pharmacological characterization of the α-adrenoceptors responsible for a decrease of blood pressure in the nucleus tractus solitarii of the rat. Naunyn Schmiedebergs Arch Pharmacol 317: 120–125

    Google Scholar 

  • Kuhar MJ, Unnerstall JR (1985) Quantitative receptor mapping by autoradiography: some current technical problems. TINS February: 49–53

  • Lowry O, Rosenborough N, Farr C, Randall R (1951) Protein measurement with the Folin reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Lundberg JM, Hemsén A, Rudehill A, Härfstrand A, Larsson O, Sollevi A, Saria A, Hökfelt T, Fuxe K, Fredholm B (1988) Neuropeptide Y- and alpha-adrenergic receptors in pig spleen: localization, binding characteristics, cyclic AMP effects and functional responses in control and denervated animals. Neuroscience 24: 54–672

    Google Scholar 

  • Martel JC, St-Pierre S, Qurion R (1986) Neuropeptide Y receptors in rat brain: autoradiographic localization. Peptides 7: 55–60

    Google Scholar 

  • Martire M, Fuxe K, Pistritto G, Preeziozi P, Agnati LF (1986) Neuropeptide Y enhances the inhibitory effects of clonidine on3H-noradrenaline release in synaptosomes isolated from the medulla oblongata of the male rats. J Neural Transm 67: 113–124

    Google Scholar 

  • McLaughlin NJ, Collins GGS (1986) Binding characteristics of the selective α2-adrenoceptor antagonist (3H)idazoxan to rat olfactory cortex membranes. Eur J Pharmacol 121: 91–96

    Google Scholar 

  • Meller E, Bohmaker K, Goldstein M, Friedhoff J (1985) Inactivation of D1 and D2 dopamine receptors by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline in vivo: selective protection by neuroleptics. J Pharmacol Exp Ther 223: 656–662

    Google Scholar 

  • Mitrus JC, U'Prichard DC (1985) Regulation of α2-adrenoreceptors by nucleotides, ions and agonists: Comparison in cells of neural and nonneural origin. In: Cooper DMF, Seamon KB (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol 19. Raven Press, New York, pp 57–73

    Google Scholar 

  • Miura M, Reis DJ (1969) Termination and secondary projection of carotid sinus nerve in cat brain stem. Am J Physiol 217: 142–153

    Google Scholar 

  • Mooney JJ, Horne WC, Handin RI, Schildkraut JJ, Alexander RW (1982) Sodium inhibits both adenylate cyclase and high-affinity3H-labeled p-aminoclonidine binding to alpha2-adrenergic receptors in purified human platelet membranes. Mol Pharmacol 21: 600–608

    Google Scholar 

  • Munson PJ (1983) Ligand. A computerized analysis of ligand binding data. In: Langer J, van Vunahis H (eds) Methods in enzymology, vol 92. Academic Press, New York, pp 543–576

    Google Scholar 

  • Nakajima T, Yashima Y, Nakamura K (1986) Quantitative autoradiographic localization of neuropeptide Y receptors in the rat lower brainstem. Brain Res 380: 144–150

    Google Scholar 

  • Olasmaa M, Terenius L (1986) Neuropeptide Y receptor interaction with α-adrenoceptor coupling to adenylate cyclase. Prog Brain Res 68: 337–341

    Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22

    Google Scholar 

  • Rodbell M, Krans HM, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of125I-glucagon. J Biol Chem 246: 1872–1876

    Google Scholar 

  • Rouot B, Snyder SH (1979)3H-para amino-clonidine: A novel ligand which binds with high affinity to α-adrenergic receptors. Life Sci 25: 769–774

    Google Scholar 

  • Rouot B, Quennedy MC, Schwartz J (1982) Characteristics of the3H-yohimbine binding on rat brain α2-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 321: 253

    Google Scholar 

  • Saria A, Theodorsson-Norheim E, Lundberg JM (1984) Evidence for specific neuropeptide Y-binding sites in rat brain synaptosomes. Eur J Pharmacol 107: 105–107

    Google Scholar 

  • Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–672

    Google Scholar 

  • Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. The Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Tatemoto K (1982 a) Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci USA 79: 2514–2518

    Google Scholar 

  • Tatemoto K (1982 b) Neuropeptide Y. Complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 79: 5484–5489

    Google Scholar 

  • Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y-a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 269: 659–660

    Google Scholar 

  • Undén A, Tatemoto K, Mutt V, Bartfai T (1984) Neuropeptide Y receptor in the rat brain. Eur J Biochem 145: 525–530

    Google Scholar 

  • Undén A, Bartfai T (1984) Regulation of neuropeptide Y binding by guanine nucleotides in the rat cerebral cortex. FEBS Lett 177: 125–128

    Google Scholar 

  • Westlind-Danielsson A, Undén A, Abens J, Andell S, Bartfai T (1987) Neuropeptide Y and the inhibition of adenylate cyclase in the human frontal and temporal cortex. Neurosci Lett 74: 237–242

    Google Scholar 

  • Williams LT, Lefkowitz RJ (1978) Receptor binding studies in adrenergic pharmacology. Raven Press, New York

    Google Scholar 

  • Young WS, Kuhar MJ (1979) Noradrenergic α 1 and α 2 receptors: autoradiographic visualization. Eur J Pharmacol 59: 317–319

    Google Scholar 

  • Young WS III, Kuhar MJ (1980) Noradrenergic alpha-1 and alpha-2 receptors: light microscopic autoradiographic localization. Proc Natl Acad Sci USA 77: 1696–1700

    Google Scholar 

  • Zandberg P, De Jong W, De Wied (1979) Effect of catecholamina-receptor stimulating agents on blood pressure after local application in the nucleus tractus solitarii of the medulla oblongata. Eur J Pharmacol 55: 43–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Härfstrand, A., Fuxe, K., Agnati, L. et al. Reciprocal interactions between α2-adrenoceptor agonist and neuropeptide Y binding sites in the nucleus tractus solitarius of the rat. J. Neural Transmission 75, 83–99 (1989). https://doi.org/10.1007/BF01677422

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01677422

Keywords

Navigation