Skip to main content
Log in

Effect of Power Modulation on Radical Concentration and Uniformity in a Single-Wafer Plasma Reactor

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of power modulation on radical concentration and uniformity in a single-wafer plasma reactor was investigated with a radical transport and reaction model. Plasma etching of silicon using tetrafluoromethane under relatively high pressure (~1 torr) high frequency (13.56 M Hz) conditions was taken as an example system. Gas velocity, temperature, and radical concentration profiles were obtained numerically by a finite element method. When compared to a continuous wave plasma, power modulation can alter the relative concelllration of radicals and in turn the etch rate and uniformity as well as selectivity and anisotropy. Uniformity is improved by power modulation except at high flow rates which, however, result in poor utilization of the feedstock gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, NJ (1990).

    Google Scholar 

  2. D. J. Economou, S.-K. Park, and G. Williams, J. Electrochem. Soc. 136, 188 (1989).

    Article  CAS  Google Scholar 

  3. M. Dalvie and K. F. Jensen, J. Vac. Sci. Technol. A8, 1648 (1990).

    Article  Google Scholar 

  4. J. A. Mucha, D. W. Hess, and E. S. Aydil, in Introduction to Microlithography, 2nd edition, L. F. Thompson, C. Grant Willson, and M. J. Bowden, eds, ACS Professional Reference Book, Washington, DC (1994). p. 377.

    Google Scholar 

  5. J. W. Coburn and H. F. Winters, J. Vac. Sci. Technol. 16, 391 (1979).

    Article  CAS  Google Scholar 

  6. S. Samukawa and S. Furuoya, Appl. Phys. Lett. 63, 2044 (1993).

    Article  CAS  Google Scholar 

  7. K. Takahashi, M. Hori, and T. Goto, Jpn. J. Appl. Phys. 32, L1088 (1993).

    Article  CAS  Google Scholar 

  8. J. T. Verdeyen, J. Beberman, and L. Overzet, J. Vac. Sci. Technol. A8, 1851 (1990).

    Article  Google Scholar 

  9. L. J. Overzet, J. H. Beberman, and J. T. Verdeyen, J. Appl. Phys. 66, 1622 (1989).

    Article  Google Scholar 

  10. Y. Watanabe, M. Shiratani, and H. Makino, Appl. Phys. Lett. 57, 1616 (1990).

    Article  CAS  Google Scholar 

  11. Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa, and S. Ogi, Appl. Phys. Lett. 53, 1263 (1988).

    Article  CAS  Google Scholar 

  12. A. Bouchoule, A. Plain, L. Boufendi, J. Ph. Blondeau, and L. Laure, J. Appl. Phys. 70, 1991 (1991).

    Article  CAS  Google Scholar 

  13. A. Bouchoule and P. Ranson, J. Vac. Sci. Technol. A9, 317 (1991).

    Article  Google Scholar 

  14. S. G. Hansen, G. Luckman, and S.D. Colson, Appl. Phys. Lett. 53, 1589 (1988).

    Article  Google Scholar 

  15. K. Takahashi, M. Hori, K. Maruyama, S. Kishimoto, and T. Goto, Jpn. J. Appl. Phys. 32, L694 (1993).

    Article  CAS  Google Scholar 

  16. S.-K. Park and D. J. Economou, J. Electrochem. Soc. 137, 2103 (1990); J. Electrochem. Soc. 138, 1499 (1991).

    Article  CAS  Google Scholar 

  17. E. Aydil and D. J. Economou, J. Electrochem. Soc. 140, 1471 (1993).

    Article  CAS  Google Scholar 

  18. D. Edelson and D. L. Flamm, J. Appl. Phys. 56, 1522 (1984).

    Article  CAS  Google Scholar 

  19. I. C. Plumb and K. R. Ryan, Plasma Chem. Plasma Process. 6, 205 (1986); K. R. Ryan and I. C. Plumb, Plasma Chem. Plasma Process. 6, 231 (1986).

    Article  CAS  Google Scholar 

  20. P. V. Danckwerts, Chem. Eng. Sci. 2, 1 (1953).

    Article  CAS  Google Scholar 

  21. P. Jiang and D. J. Economou, J. Appl. Phys. 73, 8151 (1993).

    Article  CAS  Google Scholar 

  22. A. Dengra, J. Ballesteros, M. A. Hernandez, and V. Colomer, J. Appl. Phys. 68, 5507 (1990).

    Article  CAS  Google Scholar 

  23. K. E. Greenberg and G. A. Hebner, J. Appl. Phys. 73, 8126 (1993).

    Article  CAS  Google Scholar 

  24. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York (1977).

    Google Scholar 

  25. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transpon Phenomena, Wiley, New York (1960).

    Google Scholar 

  26. T. J. R. Hughes, W. K. Liu, and A. Brooks, J. Comput. Phys. 30, 1–60 (1979).

    Article  Google Scholar 

  27. S.-K. Park and D. J. Economou, J. Electrochem. Soc. 137, 2624 (1990).

    Article  CAS  Google Scholar 

  28. E. Aydil and D. J. Economou, J. Electrochem. Soc. 139, 1396 (1992).

    Article  CAS  Google Scholar 

  29. D. P. Lymberopoulos and D. J. Economou, Appl. Phys. Lett. 63, 2478 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Science Foundation (CTS-9216023) and the Texas Advanced Technology Program for financial support of this work. Also, thanks are due to the Pittsburgh Supercomputer Center (supported by NSF) for a Cray C90 time grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, P., Economou, D.J. & Shin, C.B. Effect of Power Modulation on Radical Concentration and Uniformity in a Single-Wafer Plasma Reactor. Plasma Chem Plasma Process 15, 383–408 (1995). https://doi.org/10.1007/BF01650736

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01650736

Key Words

Navigation