Skip to main content
Log in

Surface potential and energy-coupling in bioenergy-conserving membrane systems

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

In order to understand the localization of dyes and the nature of their responses in membranes and particularly in those involved in energy-conservation processes, the influence of micelles of neutral and ionic surfactants on the pK a of solubilized fluorophoric (umbelliferone) and chromophoric (bromthymol blue and methyl red) indicator dyes is studied. It is shown that the pK a of the indicator adsorbed onto micelles shifted towards the acid extreme with cationic micelles, to the alkaline side with anionic micelles while it was not significantly modified by the neutral ones. Maximal displacements were observed with Methyl Red where the difference in pK a between anionic and cationic micelles was as large as 3 pH units. Phospholipid liquid crystals (Liposomes) of phosphatidylcholine with and without adsorbed long-chain ions introduced in order to confer to it a net surface charge induced displacements of the pK a of UBF analogous to those detected in the presence of detergent micelles. It was demonstrated that UBF can monitor reversal of charge phenomena such as that obtained by the interaction of phosphatidylcholine + dicetyl phosphate liposomes (anionic colloid) with poly-L-lysine (cationic colloid). The partition of the indicator dyes between micellar and aqueous phases was determined by gel filtration revealing thequasi exclusive presence of the dyes in the micellar phase. Fluorescence polarization measurement of solubilized UBF in either ionic micelles or submitochondrial particles indicate that the dye tumbling rate is as rapid as in pure water suggesting that the dye is mobile in an interfacial environment where it can experience modifications due to changes in surface potential. The use of UBF as a probe of respiration-dependent energy-linked reactions in submitochondrial particles is presented. The available data on the use of indicator dyes in mitochondrial, chloroplast and bacterial chromatophore membranes is reevaluated, on the basis of the evidence of the extreme sensitivity of these probes to surface charge. The implications of these results and considerations are discussed in terms of the importance of the surface potential in the primary event of the energy-coupling process in oxidative and photosynthetic phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C., Slater,Quart. Rev. Biophys.,4 (1971) 35.

    Google Scholar 

  2. P., Mitchell,Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Research, Bodmin, Cornwall (1966).

    Google Scholar 

  3. P., Mitchell,Chemiosmotic Coupling and Energy Transduction. Glynn Research, Bodmin, Cornwall (1968).

    Google Scholar 

  4. B. Chance and M. Montal, in:Current Topics in Membranes and Transport, F. Bronner and A. Kleinzeller (eds.), Academic Press, N. Y., 1971, Vol. 2, 99–156.

    Google Scholar 

  5. R. J. P. Williams, in:Current Topics in Bioenergetics, D. R. Sanadi (ed.), Academic Press, N. Y.,3 (1969) 79.

    Google Scholar 

  6. V. P. Skulachev, in:Current Topics in Bioenergetics, D. R. Sanadi (ed.), Academic Press, N. Y.,4 (1971) 127.

    Google Scholar 

  7. B. Chance,Proc. Nat. Acad. Sci. U.S. 67, (1970) 560.

    Google Scholar 

  8. G. S. Hartley,Trans. Faraday Soc.,30 (1934) 444.

    Google Scholar 

  9. G. S. Hartley and J. W. Roe,Trans. Faraday Soc.,36 (1940) 101.

    Google Scholar 

  10. P. Mukerjee and K. Banerjee,J. Phys. Chem.,68, (1964) 3367.

    Google Scholar 

  11. A. D. Bangham,Prog. Biophys. Mol. Biol.,18 (1968) 29.

    Google Scholar 

  12. G. Weber and B. Bablonzian,J. Biol. Chem.,241 (1966) 2558.

    Google Scholar 

  13. J. M. Fessenden and S. Racker,Meth. Enzymol.,10 (1967) 194.

    Google Scholar 

  14. C. P. Lee and L. Ernster,Meth. Enzymol.,10 (1967) 543.

    Google Scholar 

  15. E. E. Jacobs, M. Jacob, D. R. Sanadi and L. B. Bradley,J. Biol. Chem.,223 (1956) 147.

    Google Scholar 

  16. W. W. Fish, K. G. Mann and C. Tanford,J. Biol. Chem.,244 (1969) 4989.

    Google Scholar 

  17. M. F. Emerson and A. Holtzer,J. Phys. Chem.,71 (1967) 1898.

    Google Scholar 

  18. D. Chávez, M.S. Thesis. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México (1967).

  19. K. Shinoda, T. Nakagawa, B. I. Tamamushi and T. Isemura,Colloidal Surfactants: Some Physicochemical Properties, Academic Press, N.Y. and London, Chapter 1 (1963).

    Google Scholar 

  20. H. G. Bungenberg de Jong, in:Colloid Science, H. R. Kruyt (ed.), Elsevier Publ. Co. N.Y., Amsterdam, London, Brussels, 1949, Vol. 2, p. 335.

    Google Scholar 

  21. H. K. Kimelberg and D. Papahadjopoulos,J. Biol. Chem.,246 (1971) 1142.

    Google Scholar 

  22. P. Mitchell, J. Moyle and L. Smith,European J. Biochem.,4 (1968) 9.

    Google Scholar 

  23. J. B. Jackson and A. R. Crofts,European J. Biochem.,10 (1969) 226.

    Google Scholar 

  24. D. G. Herries, W. Bishop and F. M. Richards,J. Phys. Chem.,68 (1964) 1842.

    Google Scholar 

  25. G. Weber,Advan. Protein Chem.,8 (1953) 415

    Google Scholar 

  26. B. Rubalcava, D. Martïnez Rojas and C. Gitler,Biochemistry,8 (1969) 2742.

    Google Scholar 

  27. J. T. Davies and E. K. Rideal,Interfacial Phenomena, Academic Press, London, Chapter 2 (1961).

    Google Scholar 

  28. , Chapter 3 (1961).

    Google Scholar 

  29. , p. 146 (1961).

    Google Scholar 

  30. D. Papahadjopoulos and J. C. Watkins,Biochim. Biophys. Acta,135 (1967) 639.

    Google Scholar 

  31. P. Mukerjee and A. Ray,J. Phys. Chem.,70 (1966) 2144.

    Google Scholar 

  32. I. M. Flanagan and S. Ainsworth,Biochim. Biophys. Acta,168 (1968) 16.

    Google Scholar 

  33. J. R. Brocklehurst, R. B. Freedman, D. J. Hancock and G. K. Radda,Biochem. J.,116 (1970) 721.

    Google Scholar 

  34. A. S. Waggoner, O. H. Griffith and C. R. Christensen,Proc. Nat. Acad. Sci. U.S.,57 (1967) 1198.

    Google Scholar 

  35. J. Kumamoto, J. C. Powers and W. R. Heller,J. Chem. Phys.,36 (1962) 2893.

    Google Scholar 

  36. J. R. Platt,J. Chem. Phys.,34 (1961) 862.

    Google Scholar 

  37. W. Liptay,Angew. Chem. Internat. Edit.,8 (1969) 177.

    Google Scholar 

  38. H. M. Emrich, W. Junge and H. T. Witt,Naturwiss.,56 (1969) 514.

    Google Scholar 

  39. B. Chance, A. R. Crofts, M. Nishimura and B. Price,European J. Biochem.,13 (1970) 364.

    Google Scholar 

  40. B. Chance, J. A. McCray and J. BunkenburgNature,225, (1970) 705.

    Google Scholar 

  41. H. H. Grunhagen and H. T. Witt,Z. Naturforsch.,25b (1970) 373.

    Google Scholar 

  42. A. Azzi, B. Chance, G. K. Radda and C. P. Lee,Proc. Nat. Acad. Sci. U.S.,62 (1969) 612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A preliminary account of this research has been presented elsewhere (IV International Biophysics Congress of the International Union of Pure and Applied Biophysics, Moscow, August 1972).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montal, M., Gitler, C. Surface potential and energy-coupling in bioenergy-conserving membrane systems. J Bioenerg Biomembr 4, 363–382 (1973). https://doi.org/10.1007/BF01648978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01648978

Keywords

Navigation