Skip to main content
Log in

Numerical study of the unstable MHD spectrum of a small aspect ratio, flat current, non-circular tokamak

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The Lausanne ideal MHD stability code ERATO is used to investigate spectral properties of Solovèv's equilibrium at small aspect ratios. Two different elongations are considered. Both free and rigid boundary models are computed and compared. Modes characterized by a large radial extension have been found which appear to be due to a coupling ofm=1 andm=2 modes due to toricity. The internal modes spectrum is compared with the predictions of the full mercier criterion, taking into account its spatial dependence, and with the ballooning modes stability criterion.

Résumé

Les propriétés spectrales des équilibres analytiques de Solov'èv à petit rapport d'aspect sont étudiées à l'aide du code numérique ERATO qui permet de calculer le spectre magnétohydrodynamique d'une configuration Tokomak quelconque. Nous avons examiné deux situations différentes: paroi conductrice collée contre la surface du plasma et vide infini ainsi que deux élongations. Nous avons trouvé que les modes instables ont une grande extension radiale, due au couplage torique entre les modesm=1 etm=2. Le spectre des modes internes est comparé aux prédictions du critère de Mercier, prenant en considération sa dépendance radiale. La limite de stabilité aux modes internes à basn est comprise entre la limite de Mercier correspondante et la limite ballooning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Frieman, J. M. Greene, J. L. Johnson andK. E. Weimer, Phys. Fluids16, 1108 (1973).

    Google Scholar 

  2. J. A. Wesson, Proc. 7th Fusion Conference Lausanne 1975, Vol. 2, p. 102.

  3. V. D. Shafranov, Sov. Phys. Tech. Phys.15, 175 (1970).

    Google Scholar 

  4. M. N. Bussac, R. Pellat, D. Edery andJ. L. Soulé, Phys. Rev. Letters35, 1638 (1975).

    Google Scholar 

  5. K. Appert, R. Gruber andJ. Vaclavik, Phys. Fluids17, 1471 (1974).

    Google Scholar 

  6. J. P. Goedbloed, Phys. Fluids18, 1258 (1975).

    Google Scholar 

  7. C. Mercier, Nuclear Fusion1, 47 (1960).

    Google Scholar 

  8. D. Correa-Restrepo, Z. Naturforschung33A, 789 (1978).

    Google Scholar 

  9. D. Dobrott, D. B. Nelson, J. M. Greene, A. H. Glasser, M. Chance andE. A. Frieman, Phys. Rev. Lett.39, 943 (1977).

    Google Scholar 

  10. J. W. Connor, R. J. Hastie andJ. B. Taylor, Phys. Rev. Lett.40, 396 (1978).

    Google Scholar 

  11. A. Sykes andJ. A. Wesson, Nucl. Fusion14, 645 (1974).

    Google Scholar 

  12. G. Bateman, W. Schneider andW. Grossmann, Nucl. Fusion14, 669 (1974).

    Google Scholar 

  13. D. Berger, R. Gruber andF. Troyon, 2nd European Conf. on Computational Physics, Garching 1976, paper C3.

  14. R. C. Grimm, J. M. Greene andJ. L. Johnson, inMethods in Computational Physics, Vol. 16, Academic Press, New York (1976), p. 253.

    Google Scholar 

  15. W. Kerner, Nucl. Fusion16, 643 (1976).

    Google Scholar 

  16. L. S. Solovév, Sov. Phys.-JETP26, 400 (1968).

    Google Scholar 

  17. R. Gajewski, Phys. Fluids15, 70 (1972).

    Google Scholar 

  18. R. L. Dewar, R. C. Grimm, J. L. Johnson, E. A. Frieman, J. M. Greene andP. H. Rutherford, Phys. Fluids17, 930 (1974).

    Google Scholar 

  19. I. B. Bernstein, E. A. Frieman, M. D. Kruskal andR. M. Kulsrud, Proc. Roy. Soc. (London) Ser.A244, 39 (1958).

    Google Scholar 

  20. E. Rebhan, Nucl. Fusion15, 277 (1975).

    Google Scholar 

  21. D. Borel, K. Appert, D. Berger, R. Gruber andF. Troyon, Angew. Math. Phys.26, 656 (1975).

    Google Scholar 

  22. G. Laval, Phys. Rev. Letters34, 1316 (1974).

    Google Scholar 

  23. D. Berger, R. Gruber andF. Troyon, 3rd Int. Congress on Waves and Instabilities in Plasmas, Ecole Polytechnique, Palaiseau (1977) paper 2B2, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presently at IBM Lausanne.

Presently at General Atomics, San Diego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, D., Bernard, L.C., Gruber, R. et al. Numerical study of the unstable MHD spectrum of a small aspect ratio, flat current, non-circular tokamak. Journal of Applied Mathematics and Physics (ZAMP) 31, 113–132 (1980). https://doi.org/10.1007/BF01601708

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01601708

Keywords

Navigation