Skip to main content
Log in

Reduction of perchlorate by an anaerobic enrichment culture

  • Published:
Journal of Industrial Microbiology

Summary

A mixed bacterial culture capable of reducing perchlorate stoichiometrically to chloride under naerobic conditions was enriched from municipal digester sludge. The reduction of 10 mM perchlorate resulted in oxidation of the medium and cessation of perchlorate reduction. The activity was recovered on addition of a reducing agent. Addition of air to the culture during perchlorate reduction immediately terminated the process and aeration for 12 h permanently destroyed the ability of the culture to reduce perchlorate. The culture also reduced nitrite, nitrate, chlorite, chlorate and sulfate. The presence of 10 mM nitrite or chlorite completely inhibited perchlorate reduction, whereas the same concentration of chlorate decreased the reduction rate. Nitrate or sulfate did not affect perchlorate reduction. Chlorate and chlorite, suspected intermediates in the reduction of perchlorate to chloride, were not detected in any cultures during reduction of perchlorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hackenthal, E. 1965. Die reduktion von perchlorat durch bakterien — II. Die identität der nitratreduktase und des perchlorat reduzierenden enzyms ausB. cereus. Biochem. Pharm. 14: 1313–1324.

    PubMed  Google Scholar 

  2. Hackenthal, E., W. Mannheim, R. Hackenthal and R. Becher. 1964. Die reduktion von perchlorat durch bakterien. I. Untersuchungen an intakten zellen. Biochem. Pharm. 13: 195–106.

    PubMed  Google Scholar 

  3. Jacob, H.-E. 1970. Redox potential. In: Methods in Microbiology vol. 2 (Norris, J.R. and D.W. Ribbons, ed.), pp. 91–123, Academic Press, Inc., New York.

    Google Scholar 

  4. Jenneman, G.E., M.J. McInerney and R. Knapp. 1986. Effect of nitrate on biogenic sulfide production. Appl. Environ. Microbiol. 51: 1205–1211.

    Google Scholar 

  5. Jenneman, G.E., A.D. Montgomery and M.J. McInerney. 1986. Method for detection of microorganisms that produce gaseous nitrogen oxides. Appl. Environ. Microbiol. 51: 776–780.

    Google Scholar 

  6. Korenkov, V.N., V.I. Romanenko, S.I. Kuznetsov and J.V. Voronov. 1976. Process for purification of industrial waste waters from perchlorates and chlorates. US Patent 3 943 055.

  7. Malmqvist, A., T. Welander and L. Gunnarsson. 1991. Anaerobic growth of microorganisms with chlorate as an electron acceptor. Appl. Environ. Microbiol. 57: 2229–2232.

    Google Scholar 

  8. McEwan, A.G., H.G. Wetzstein, O. Meyer, J.B. Jackson and S.J. Ferguson. 1987. The periplasmic nitrate reductase ofRhodobacter capsulatus; purification, characterization, and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch. Microbiol. 147: 340–345.

    Google Scholar 

  9. Oltmann, L.F., V.P. Claassen, P. Kastelein, W.N.M. Reijnders and A.H. Stouthamer. 1979. Influence of Tungstate on the formation and activities of four reductases inProteus mirabilis. FEBS Lett. 106: 43–46.

    PubMed  Google Scholar 

  10. Oltmann, L.F., W.N.M. Reijnders and A.H. Stouthamer. 1976. Characterization of a purified nitrate reductase A and chlorate reductase C fromProteus mirabilis. Arch. Microbiol. 111: 25–35.

    PubMed  Google Scholar 

  11. Payne, W.J. 1973. Reduction of nitrogenous oxides by microorganisms. Bact. Rev. 37: 409–452.

    PubMed  Google Scholar 

  12. Payne, W. J. 1981. Denitrification, pp. 109–111, John Wiley and Sons, New York.

    Google Scholar 

  13. Pichinoty, F., J. Puig, M. Chippaux, J. Bigliardi-Rouvier and J. Gendre. 1969. Recherches sur des mutants bacteriens ayant perdu les activites catalytiques liees a la nitrate-reductase A. Ann. Inst. Pasteur 116: 409–432.

    Google Scholar 

  14. Romanenko, V.I., V.N. Korenkov and S.I. Kuznetsov. 1976. Bacterial decomposition of ammonium perchlorate. Mikrobiologiya 45: 204–209.

    Google Scholar 

  15. Riggs, D.L., J.S. Tang and E.L. Barrett. 1987. Thiosulfate reductase as a chlorate reductase inSalmonella typhimurium. FEMS Microbiol. Lett. 44: 427–430.

    Google Scholar 

  16. Sanchez Crispin, J.A., M. Dubourdieu and J. Puig. 1984. Chlorate metabolism by whole cells and vesicles ofEsherichia coli K-12. Acta Cientifica Venezolana 35: 363–368.

    PubMed  Google Scholar 

  17. Stouthamer, A.H. 1967a. Nitrate reduction inAerobacter aerogenes. I. Isolation and properties of mutant strains blocked in nitrate assimilation and resistant against chlorate. Arch. Mikrobiol. 56: 68–75.

    PubMed  Google Scholar 

  18. Stouthamer, A.H. 1967b. Nitrate reduction inAerobacter aerogenes. II. Characterization of mutants blocked in the reduction of nitrate and chlorate. Arch. Mikrobiol. 56: 76–80.

    PubMed  Google Scholar 

  19. Urbanski, T. 1988. Chemistry and Technology of Explosives, vol. 4, pp. 602–620, Pergamon Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attaway, H., Smith, M. Reduction of perchlorate by an anaerobic enrichment culture. Journal of Industrial Microbiology 12, 408–412 (1993). https://doi.org/10.1007/BF01569673

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569673

Key words

Navigation