Skip to main content
Log in

Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid by enrichment cultures from freshwater sediments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was investigated using enrichment cultures from freshwater sediments at two different sites in the region of Halle, central Germany. 2,4,5-T and different organic acids or hydrogen were added as possible electron acceptor and electron donors, respectively. The primary enrichment cultures from Saale river sediment completely degraded 2,4,5-T to 3-chlorophenol (3-CP) (major product) and 3,4-dichlorophenol (3,4-DCP) during a 28-day incubation period. Subcultures showed ether cleavage of 2,4,5-T to 2,4,5-trichlorophenol and its stoichiometric dechlorination to 3-CP only in the presence of butyrate. In contrast, the primary enrichment culture from sediment of Posthorn pond dechlorinated 2,4,5-T to 2,5-dichlorophenoxyacetic acid (2,5-D), which, in the presence of butyrate, was degraded further to products such as 3,4-DCP, 2,5-DCP, and 3CP, indicating ether cleaving activities and subsequent dechlorination steps. Experiments with pure cultures of Dehalococcoides mccartyi and Desulfitobacterium hafniense demonstrated their specific dechlorination steps within the overall 2,4,5-T degradation pathways. The results indicate that the route and efficiency of anaerobic 2,4,5-T degradation in the environment depend heavily on the microorganisms present and the availability of slowly fermentable organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH (2007) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41:2318–2323

    Article  CAS  Google Scholar 

  • Adrian L, Manz W, Szewzyk U, Görisch H (1998) Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64:496–503

    CAS  Google Scholar 

  • Arildskov NP, Pedersen PG, Albrechtsen H-J (2001) Fate of the herbicides 2,4,5-T, atrazine, and DNOC in a shallow, anaerobic aquifer investigated by in situ passive diffusive emitters and laboratory batch experiments. Ground Water 39:819–830

    Article  CAS  Google Scholar 

  • Ballerstedt H, Hantke J, Bunge M, Werner B, Gerritse J, Andreesen JR, Lechner U (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol Ecol 47:223–234

    Article  CAS  Google Scholar 

  • Breitenstein A, Saano A, Salkinoja-Salonen M, Andreesen JR, Lechner U (2001) Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch Microbiol 175:133–142

    Article  CAS  Google Scholar 

  • Bryant FO (1992) Biodegradation of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by dichlorophenol-adapted microorganisms from freshwater, anaerobic sediments. Appl Microbiol Biotechnol 38:276–281

    Article  CAS  Google Scholar 

  • Bunge M, Wagner A, Fischer M, Andreesen JR, Lechner U (2008) Enrichment of a dioxin-dehalogenating Dehalococcoides species in two-liquid phase cultures. Environ Microbiol 10:2670–2683. https://doi.org/10.1111/j.1462-2920.2008.01688.x

    Article  CAS  Google Scholar 

  • Cavalier TC, Lavy TL, Mattice JD (1991) Persistence of selected pesticides in ground-water samples. Ground Water 29:225–231

    Article  CAS  Google Scholar 

  • Christiansen N, Ahring BK (1996) Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448

    Article  Google Scholar 

  • De Weerd K, Suflita JM, Linkfield T, Tiedje JM, Pritchard PH (1986) The relationship between reductive dehalogenation and other aryl substituent removal reactions catalyzed by anaerobes. FEMS Microbiol Ecol 38:331–339

    Article  Google Scholar 

  • Donald DB, Cessna AJ, Ed Sverko E, Nancy E, Glozier NE (2007) Pesticides in surface drinking-water supplies of the northern Great Plains. Environ Health Perspect 115:1183–1191

    Article  CAS  Google Scholar 

  • Drinking Water Directive 98/83/EC (1998) European Comission, Brussels https://eur-lex.europa.eu/eli/dir/1998/83/oj. Accessed 01 July 2019

  • Eder G (1980) Formation of chlorophenols from the corresponding chlorophenoxyacetic acids in estuarine sediment under anaerobic conditions. Veröff Inst Meeresforsch Bremerh 18:217–221

    CAS  Google Scholar 

  • Gibson SA, Suflita JM (1986) Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol 52:681–688

    CAS  Google Scholar 

  • Gibson SA, Suflita JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Appl Environ Microbiol 56:1825–1832

    CAS  Google Scholar 

  • Gibson SA, Suflita JM (1993) Role of electron-donating cosubstrates in the anaerobic biotransformation of chlorophenoxyacetates to chlorophenols by a bacterial consortium enriched on phenoxyacetate. Biodegradation 4:51–57

    Article  CAS  Google Scholar 

  • Ha DD (2018) Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT. Biodegradation 29:499–510

    Article  CAS  Google Scholar 

  • Lampi P, Vohlonen I, Tuomisto J, Heinonen OP (2000) Increase of specific symptoms after long-term use of chlorophenol polluted drinking water in a community. Eur J Epidemiol 16:245–251

    Article  CAS  Google Scholar 

  • Lechner U et al (2018) Desulfitobacterium contributes to the microbial transformation of 2,4,5-T by methanogenic enrichment cultures from a Vietnamese active landfill. Microb Biotechnol 11:1137–1156

    Article  CAS  Google Scholar 

  • Löffler F, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056

    Google Scholar 

  • Mac Nelly A, Kai M, Svatos A, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. Appl Environ Microbiol 80:4313–4322. https://doi.org/10.1128/AEM.00881-14

    Article  CAS  Google Scholar 

  • Malaguerra F, Albrechtsen HJ, Thorling L, Binning PJ (2012) Pesticides in water supply wells in Zealand, Denmark: a statistical analysis. Sci Total Environ 414:433–444

    Article  CAS  Google Scholar 

  • Mikesell MD, Boyd SA (1984) Reductive dechlorination of the pesticides 2,4-D, 2,4,5-T, and pentachlorophenol in anaerobic sludges. J Environ Qual 14:337–340

    Article  Google Scholar 

  • Milosevic N, Thomsen NI, Juhler RK, Albrechtsen H-J, Bjerg PL (2012) Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting. J Hydrol 446-447:13–23

    Article  CAS  Google Scholar 

  • Mohn WW, Kennedy KJ (1992) Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl Environ Microbiol 58:1367–1370

    CAS  Google Scholar 

  • Montag D, Schink B (2018) Formate and hydrogen as electron shuttles in terminal fermentations in an oligotrophic freshwater lake sediment. Appl Environ Microbiol 84:e01572–e01518

    Article  CAS  Google Scholar 

  • Prommer H, Tuxen N, Bjerg PL (2006) Fringe-controlled natural attenuation of phenoxy acids in a landfill plume: integration of field-scale processes by reactive transport modeling. Environ Sci Technol 40:4732–4738

    Article  CAS  Google Scholar 

  • Rice JF, Menn FM, Hay AG, Sanseverino J, Sayler GS (2005) Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil. Biodegradation 16:501–512

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  Google Scholar 

  • Schütte G, Eckerstorfer M, Rastelli V, Reichenbecher W, Restrepo-Vassalli S, Ruohonen-Lehto M, Saucy AGW, Mertens M (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29:29–12. https://doi.org/10.1186/s12302-016-0100-y

    Article  CAS  Google Scholar 

  • Suflita JM, Stout J, Tiedje JM (1984) Dechlorination of (2,4,5-trichlorophenoxy)acetic acid by anaerobic microorganisms. J Agric Food Chem 32:218–221

    Article  CAS  Google Scholar 

  • Thibodeau J, Gauthier A, Duguay M, Villemur R, Lépine F, Juteau P, Beaudet R (2004) Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 70:4532–4537

    Article  CAS  Google Scholar 

  • Tuxen N, Ejlskov P, Albrechtsen HJ, Reitzel LA, Pedersen JK, Bjerg PL (2003) Application of natural attenuation to ground water contaminated by phenoxy acid herbicides at an old landfill in Sjoelund, Denmark. Ground Water Monit Remediat 23:48–58

    Article  CAS  Google Scholar 

  • Utkin I, Dalton DD, Wiegel J (1995) Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61:346–351

    CAS  Google Scholar 

  • Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619

    Article  CAS  Google Scholar 

  • Walther R, Hippe H, Gottschalk G (1977) Citrate, a specific substrate for the isolation of Clostridium sphenoides. Appl Environ Microbiol 33:955–962

    CAS  Google Scholar 

  • Wang Y, Wu C, Wang X, Zhou S (2009) The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. J Hazard Mater 164:941–947

    Article  CAS  Google Scholar 

  • Wu CY, Zhuang L, Zhou SG, Yuan Y, Yuan T, Li FB (2013) Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5. Microb Biotechnol 6:141–149

    Article  Google Scholar 

  • Zinder SH (2016) The genus Dehalococcoides. In: Adrian L, Löffler F (eds) Organohalide-respiring bacteria. Springer, Berlin, pp 107–136

    Chapter  Google Scholar 

Download references

Funding

This work was financially supported by a grant of the German Research Council (FOR1530) to HA and UL. We thank Janine Voigtländer and Stefan Schwoch (Institute of Biology, Microbiology, Halle, Germany) for valuable assistance in some experiments. We are grateful to Gary Sawers for support and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Lechner.

Additional information

Responsible editor: Gerald Thouand

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Fathi, H., Koch, M., Lorenz, W.G. et al. Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid by enrichment cultures from freshwater sediments. Environ Sci Pollut Res 26, 34459–34467 (2019). https://doi.org/10.1007/s11356-019-06584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06584-y

Keywords

Navigation