Skip to main content
Log in

Biological perchlorate reduction: which electron donor we can choose?

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biological reduction is an effective method for removal of perchlorate (ClO4), where perchlorate is transformed into chloride by perchlorate-reducing bacteria (PRB). An external electron donor is required for autotrophic and heterotrophic reduction of perchlorate. Therefore, plenty of suitable electron donors including organic (e.g., acetate, ethanol, carbohydrate, glycerol, methane) and inorganic (e.g., hydrogen, zero-valent iron, element sulfur, anthrahydroquinone) as well as the cathode have been used in biological reduction of perchlorate. This paper reviews the application of various electron donors in biological perchlorate reduction and their influences on treatment efficiency of perchlorate and biological activity of PRB. We discussed the criteria for selection of appropriate electron donor to provide a flexible strategy of electron donor choice for the bioremediation of perchlorate-contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD (2001) Dechloromonas agitata gen. nov., sp nov and Dechlorosoma suillum gen. nov., sp nov., two novel environmentally dominant (per) chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Micr 51:527–533

    Article  CAS  Google Scholar 

  • Ahn CH, Oh H, Ki D, Van Ginkel SW, Rittmann BE, Park J (2009) Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Appl Microbiol Biot 81:1169–1177

    Article  CAS  Google Scholar 

  • Ahn SC, Hubbard B, Cha DK, Kim BJ (2014) Simultaneous removal of perchlorate and energetic compounds in munitions wastewater by zero-valent iron and perchlorate-respiring bacteria. J Environ Sci Heal A 49:575–583

    Article  CAS  Google Scholar 

  • Andrews EJ, Novak PJ (2001) Influence of ferrous iron and pH on carbon tetrachloride degradation by Methanosarcina thermophila. Water Res 35:2307–2313

    Article  CAS  Google Scholar 

  • Annachhatre AP, Suktrakoolvait S (2001) Biological sulfate reduction using molasses as a carbon source. Water Environ Res 73:118–126

    Article  CAS  Google Scholar 

  • Arthur RD, Torlapati J, Shin K-H, Cha DK, Yoon Y, Son A (2013) Process control factors for continuous microbial perchlorate reduction in the presence of zero-valent iron. Front Env Sci Eng 8:386–393

    Article  CAS  Google Scholar 

  • Bardiya N, Bae JH (2011) Dissimilatory perchlorate reduction: a review. Microbiol Res 166:237–254

    Article  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  Google Scholar 

  • Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD, Achenbach LA (2005) Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187:5090–5096

    Article  CAS  Google Scholar 

  • Boles AR, Conneely T, McKeever R, Nixon P, Nusslein KR, Ergas SJ (2012) Performance of a pilot-scale packed bed reactor for perchlorate reduction using a sulfur oxidizing bacterial consortium. Biotechnol Bioeng 109:637–646

    Article  CAS  Google Scholar 

  • Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 44:4685–4691

    Article  CAS  Google Scholar 

  • Chaturvedi S, Dave PN (2013) A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc 17:135–149

    Article  CAS  Google Scholar 

  • Chen R, Luo YH, Chen JX, Zhang Y, Wen LL, Shi LD, Tang Y, Rittmann BE, Zheng P, Zhao HP (2016) Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors. Environ Sci Pollut R 23:9540–9548

    Article  CAS  Google Scholar 

  • Chen XM, Liu YW, Peng L, Ni BJ (2017) Perchlorate, nitrate, and sulfate reduction in hydrogen-based membrane biofilm reactor: model-based evaluation. Chem Eng J 316:82–90

    Article  CAS  Google Scholar 

  • Chitrakar R, Makita Y, Hirotsu T, Sonoda A (2012) Montmorillonite modified with hexadecylpyridinium chloride as highly efficient anion exchanger for perchlorate ion. Chem Eng J 191:141–146

    Article  CAS  Google Scholar 

  • Choe JK, Mehnert MH, Guest JS, Strathmann TJ, Werth CJ (2013) Comparative assessment of the environmental sustainability of existing and emerging perchlorate treatment technologies for drinking water. Environ Sci Technol 47:4644–4652

    Article  CAS  Google Scholar 

  • Choi H, Silverstein J (2008) Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor. J Hazard Mater 159:440–445

    Article  CAS  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580

    Article  CAS  Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O'Connor SM, Cole KA, Bender KS, Achenbach LA (2001a) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    Article  CAS  Google Scholar 

  • Coates JD, Chakraborty R, O'Connor SM, Schmidt C, Thieme J (2001b) The geochemical effects of microbial humic substances reduction. Acta Hydrochim Hydrobiol 28:420–427

    Article  Google Scholar 

  • Crump KS, Gibbs JP (2005) Benchmark calculations for perchlorate from three human cohorts. Environ Health Persp 113:1001–1008

    Article  CAS  Google Scholar 

  • Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW, Rajagopalan S (2005) The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ Sci Technol 39:1569–1575

    Article  CAS  Google Scholar 

  • Dong HR, Deng JM, Xie YK, Zhang C, Jiang Z, Cheng YJ, Hou KJ, Zeng GM (2017) Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater 332:79–86

    Article  CAS  Google Scholar 

  • Dos Santos AB, Traverse J, Cervantes FJ, Van Lier JB (2005) Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators. Biotechnol Bioeng 89:42–52

    Article  CAS  Google Scholar 

  • Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35:2261–2267

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, den Camp HJMO, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environ Microbiol 10: 3164–3173

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microb 75:3656–3662

    Article  CAS  Google Scholar 

  • Ettwig KF, Zhu BL, Speth D, Keltjens JT, Jetten MSM, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. P Natl Acad Sci USA 113:12792–12796

    Article  CAS  Google Scholar 

  • Finster K, Liesack W, Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microb 64:119–125

    CAS  Google Scholar 

  • Fonseca AD, Crespo JG, Almeida JS, Reis MA (2000) Drinking water denitrification using a novel ion-exchange membrane bioreactor. Environ Sci Technol 34:1557–1562

    Article  CAS  Google Scholar 

  • Ford CL, Park YJ, Matson EM, Gordon Z, Fout AR (2016) A bioinspired iron catalyst for nitrate and perchlorate reduction. Science 354:741–743

    Article  CAS  Google Scholar 

  • Fox S, Bruner T, Oren Y, Gilron J, Ronen Z (2016) Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor. Biotechnol Bioeng 113:1881–1891

    Article  CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan ZG, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396

    Article  CAS  Google Scholar 

  • Gao M, Wang S, Jin C, She Z, Zhao C, Zhao Y, Zhang J, Ren Y (2015) Autotrophic perchlorate reduction kinetics of a microbial consortium using elemental sulfur as an electron donor. Environ Sci Pollut R 22:9694–9703

    Article  CAS  Google Scholar 

  • Giblin TL, Herman DC, Frankenberger WT (2000) Removal of perchlorate from ground water by hydrogen- utilizing bacteria. J Environ Qual 29:1057–1062

    Article  CAS  Google Scholar 

  • Gingras TM, Batista JR (2002) Biological reduction of perchlorate in ion exchange regenerant solutions containing high salinity and ammonium levels. J Environ Monitor 4:96–101

    Article  CAS  Google Scholar 

  • Glombitza F (2001) Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Manag 21:197–203

    Article  CAS  Google Scholar 

  • Guan XY, Xie YX, Wang JF, Wang J, Liu F (2015) Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation. Environ Sci Pollut R 22:6057–6067

    Article  CAS  Google Scholar 

  • Guo J, Zhang C, Lian J, Lu C, Chen Z, Song Y, Guo Y, Xing Y (2017) Effect of thiosulfate on rapid start-up of sulfur-based reduction of high concentrated perchlorate: a study of kinetics, extracellular polymeric substances (EPS) and bacterial community structure. Bioresour Technol 243:932–940

    Article  CAS  Google Scholar 

  • Hatzinger PB (2005) Perchlorate biodegradation for water treatment. Environ Sci Technol 39:239a–247a

    Article  CAS  Google Scholar 

  • Hu SH, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Env Microbiol Rep 1:377–384

    Article  CAS  Google Scholar 

  • Huang LP, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    Article  CAS  Google Scholar 

  • Huang YH, Zhang TC, Shea PJ, Comfort SD (2003) Effects of oxide coating and selected cations on nitrate reduction by iron metal. J Environ Qual 32:1306–1315

    Article  CAS  Google Scholar 

  • Hutchison JM, Poust SK, Kumar M, Cropek DM, MacAllister IE, Arnett CM, Zilles JL (2013) Perchlorate reduction using free and encapsulated Azospira oryzae enzymes. Environ Sci Technol 47:9934–9941

    Article  CAS  Google Scholar 

  • Jiang C, Yang Q, Wang D, Zhong Y, Chen F, Li X, Zeng G, Li X, Shang M (2017) Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell. Chem Eng J 308:783–790

    Article  CAS  Google Scholar 

  • Ju X, Field JA, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R (2007) Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol Bioeng 96:1073–1082

    Article  CAS  Google Scholar 

  • Ju X, Sierra-Alvarez R, Field JA, Byrnes DJ, Bentley H, Bentley R (2008) Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere 71:114–122

    Article  CAS  Google Scholar 

  • Kim K, Logan BE (2001) Microbial reduction of perchlorate in pure and mixed culture packed-bed bioreactors. Water Res 35:3071–3076

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  Google Scholar 

  • Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24:441–446

    Article  Google Scholar 

  • Koenig A, Liu LH (2001) Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res 35:1969–1978

    Article  CAS  Google Scholar 

  • Kroon AGM, van Ginkel CG (2004) Biological reduction of chlorate in a gas-lift reactor using hydrogen as an energy source. J Environ Qual 33:2026–2029

    Article  CAS  Google Scholar 

  • Lai C, Li BS, Chen M, Zeng GM, Huang DL, Qin L, Liu XG, Cheng M, Wan J, Du CY, Huang FL, Liu SY, Yi H (2018) Simultaneous degradation of P-nitroaniline and electricity generation by using a microfiltration membrane dual-chamber microbial fuel cell. Int J Hydrogen Energ 43:1749–1757

    Article  CAS  Google Scholar 

  • Laurinavicius V, Razumiene J, Ramanavicius A, Ryabov AD (2004) Wiring of PQQ-dehydrogenases. Biosens Bioelectron 20:1217–1222

    Article  CAS  Google Scholar 

  • Li JJ, Gao MM, Zhang G, Wang XH, Wang SG, Song C, Xu YY (2015) Perchlorate reduction in microbial electrolysis cell with polyaniline modified cathode. Bioresour Technol 177:74–79

    Article  CAS  Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463

    Article  CAS  Google Scholar 

  • Lian J, Tian X, Guo J, Guo Y, Song Y, Yue L, Wang Y, Liang X (2016) Effects of resazurin on perchlorate reduction and bioelectricity generation in microbial fuel cells and its catalysing mechanism. Biochem Eng J 114:164–172

    Article  CAS  Google Scholar 

  • Lian J, Tian X, Li Z, Guo J, Guo Y, Yue L, Ping J, Duan L (2017) The effects of different electron donors and electron acceptors on perchlorate reduction and bioelectricity generation in a microbial fuel cell. Int J Hydrogen Energ 42:544–552

    Article  CAS  Google Scholar 

  • Lin YJ, Fang QL, Chen BL (2014) Perchlorate uptake and molecular mechanisms by magnesium/aluminum carbonate layered double hydroxides and the calcined layered double hydroxides. Chem Eng J 237:38–46

    Article  CAS  Google Scholar 

  • Liu JY, Choe JK, Sasnow Z, Werth CJ, Strathmann TJ (2013) Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. Water Res 47:91–101

    Article  CAS  Google Scholar 

  • Liu JY, Choe JK, Wang Y, Shapley JR, Werth CJ, Strathmann TJ (2015) Bioinspired complex-nanoparticle hybrid catalyst system for aqueous perchlorate reduction: rhenium speciation and its influence on catalyst activity. ACS Catal 5:511–522

    Article  CAS  Google Scholar 

  • Logan BE (2001) Assessing the outlook for perchlorate remediation. Environ Sci Technol 35:482a–487a

    Article  CAS  Google Scholar 

  • London MR, De Long SK, Strahota MD, Katz LE, Speitel GE (2011) Autohydrogenotrophic perchlorate reduction kinetics of a microbial consortium in the presence and absence of nitrate. Water Res 45:6593–6601

    Article  CAS  Google Scholar 

  • London MR, Wahman DG, Katz LE, Speitel GE (2013) Zero-valent iron/biotic treatment system for perchlorate-contaminated water: lab-scale performance, modeling, and full-scale implications. J Environ Eng 139:1361–1367

    Article  CAS  Google Scholar 

  • Luo YH, Chen R, Wen LL, Meng F, Zhang Y, Lai CY, Rittmann BE, Zhao HP, Zheng P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49:2341–2349

    Article  CAS  Google Scholar 

  • Lv PL, Zhong L, Dong QY, Yang SL, Shen WW, Zhu QS, Lai CY, Luo AC, Tang Y, Zhao HP (2018) The effect of electron competition on chromate reduction using methane as electron donor. Environ Sci Pollut R 25:6609–6618

    Article  CAS  Google Scholar 

  • Ma H, Bonnie NA, Yu M, Che S, Wang Q (2016) Biological treatment of ammonium perchlorate-contaminated wastewater: a review. J Water Reuse Desal 6:82–107

    Article  CAS  Google Scholar 

  • Maree JP, Hulse G, Dods D, Schutte CE (1991) Pilot plant studies on biological sulphate removal from industrial effluent. Iwa Publishing

  • Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94

    Article  CAS  Google Scholar 

  • Matos CT, Velizarov S, Crespo JG, Reis MAM (2006) Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Res 40:231–240

    Article  CAS  Google Scholar 

  • Mieseler M, Atiyeh MN, Hernandez HH, Ahmad F (2013) Direct enrichment of perchlorate-reducing microbial community for efficient electroactive perchlorate reduction in biocathodes. J Ind Microbiol Biot 40:1321–1327

    Article  CAS  Google Scholar 

  • Miller LG, Baesman SM, Carlstrom CI, Coates JD, Oremland RS (2014) Methane oxidation linked to chlorite dismutation. Front Microbiol 5:275

    Google Scholar 

  • Modin O, Aulenta F (2017) Three promising applications of microbial electrochemistry for the water sector. Environ Sci-Water Res Technol 3:391–402

    Article  CAS  Google Scholar 

  • Moore AM, De Leon CH, Young TM (2003) Rate and extent of aqueous perchlorate removal by iron surfaces. Environ Sci Technol 37:3189–3198

    Article  CAS  Google Scholar 

  • Nerenberg R, Kawagoshi Y, Rittmann BE (2006) Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium. Water Res 40:3290–3296

    Article  CAS  Google Scholar 

  • Nerenberg R, Kawagoshi Y, Rittmann BE (2008) Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor. Water Res 42:1151–1159

    Article  CAS  Google Scholar 

  • Nerenberg R, Rittmann BE (2004) Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci Technol 49:223–230

    Article  CAS  Google Scholar 

  • Nerenberg R, Rittmann BE, Iwa Programme C (2002) Perchlorate as a secondary substrate in a denitrifying, hollow-fiber membrane biofilm reactor. In: 2nd World Water Congress: Drinking Water Treatment, vol 2. Water Science and Technology: Water Supply, vol 2. pp 259–265

  • Okeke BC, Frankenberger WT (2005) Use of starch and potato peel waste for perchlorate bioreduction in water. Sci Total Environ 347:35–45

    Article  CAS  Google Scholar 

  • Ontiveros-Valencia A, Tang Y, Krajmalnik-Brown R, Rittmann BE (2013) Perchlorate reduction from a highly contaminated groundwater in the presence of sulfate-reducing bacteria in a hydrogen-fed biofilm. Biotechnol Bioeng 110:3139–3147

    Article  CAS  Google Scholar 

  • Park JY, Yoo YJ (2009) Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Appl Microbiol Biot 82:415–429

    Article  CAS  Google Scholar 

  • Patel A, Zuo G, Lehman SG, Badruzzaman M, Clifford DA, Roberts DJ (2008) Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate. Water Res 42:4291–4298

    Article  CAS  Google Scholar 

  • Perlmutter MW, Britto R, Cowan JD, Jacobs AK (2001) In situ biotreatment of perchlorate and chromium in groundwater vol 6. Bioremediation of Inorganic Compounds, vol 9

  • Pous N, Balaguer MD, Colprim J, Puig S (2018) Opportunities for groundwater microbial electro-remediation. Microb Biotechnol 11:119–135

    Article  CAS  Google Scholar 

  • Prosnansky M, Sakakibara Y, Kuroda M (2002) High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration. Water Res 36:4801–4810

    Article  CAS  Google Scholar 

  • Ravnjak M, Vrtovsek J, Pintar A (2013) Denitrification of drinking water in a two-stage membrane bioreactor by using immobilized biomass. Bioresour Technol 128:804–808

    Article  CAS  Google Scholar 

  • Ricardo AR, Carvalho G, Velizarov S, Crespo JG, Reis MAM (2012) Kinetics of nitrate and perchlorate removal and biofilm stratification in an ion exchange membrane bioreactor. Water Res 46:4556–4568

    Article  CAS  Google Scholar 

  • Rikken GB, Kroon AGM, Ginkel CGV (1996) Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biot 45:420–426

    Article  CAS  Google Scholar 

  • Ryu HW, Nor SJ, Moon KE, Cho KS, Cha DK, Rhee KI (2012) Reduction of perchlorate by salt tolerant bacterial consortia. Bioresour Technol 103:279–285

    Article  CAS  Google Scholar 

  • Sahu AK, Conneely T, Nusslein K, Ergas SJ (2009) Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors. Biotechnol Bioeng 104:483–491

    Article  CAS  Google Scholar 

  • Schaefer CE, Fuller ME, Condee CW, Lowey JM, Hatzinger PB (2007) Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater. J Contam Hydrol 89:231–250

    Article  CAS  Google Scholar 

  • Seraj S, Kunal P, Li H, Henkelman G, Humphrey SM, Werth CJ (2017) PdAu alloy nanoparticle catalysts: effective candidates for nitrite reduction in water. ACS Catal 7:3268–3276

    Article  CAS  Google Scholar 

  • Shea C, Clauwaert P, Verstraete W, Nerenberg R (2008) Adapting a denitrifying biocathode for perchlorate reduction. Water Sci Technol 58:1941–1946

    Article  CAS  Google Scholar 

  • Shrout JD, Parkin GF (2006) Influence of electron donor, oxygen, and redox potential on bacterial perchlorate degradation. Water Res 40:1191–1199

    Article  CAS  Google Scholar 

  • Shrout JD, Scheetz TE, Casavant TL, Parkin GF (2005a) Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria. Appl Microbiol Biot 67:261–268

    Article  CAS  Google Scholar 

  • Shrout JD, Williams AGB, Scherer MM, Parkin GF (2005b) Inhibition of bacterial perchlorate reduction by zero-valent iron. Biodegradation 16:23–32

    Article  CAS  Google Scholar 

  • Son A, Lee J, Chiu PC, Kim BJ, Cha DK (2006) Microbial reduction of perchlorate with zero-valent iron. Water Res 40:2027–2032

    Article  CAS  Google Scholar 

  • Son AJ, Schmidt CJ, Shin HJ, Cha DK (2011) Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron. J Hazard Mater 185:669–676

    Article  CAS  Google Scholar 

  • Song W, Gao B, Wang H, Xu X, Xue M, Zha M, Gong B (2017) The rapid adsorption-microbial reduction of perchlorate from aqueous solution by novel amine-crosslinked magnetic biopolymer resin. Bioresour Technol 240:68–76

    Article  CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2009) Perchlorate: health effects and technologies for its removal from water resources. Int J Env Res Public Health 6:1418–1442

    Article  CAS  Google Scholar 

  • Srinivasan R, Sorial GA (2009) Treatment of perchlorate in drinking water: a critical review. Sep Purif Technol 69:7–21

    Article  CAS  Google Scholar 

  • Steinberg LM, Trimble JJ, Logan BE (2005) Enzymes responsible for chlorate reduction by Pseudomonas sp are different from those used for perchlorate reduction by Azospira sp. FEMS Microbiol Lett 247:153–159

    Article  CAS  Google Scholar 

  • Sun J, Li W, Li Y, Hu Y, Zhang Y (2013) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresour Technol 142:407–414

    Article  CAS  Google Scholar 

  • Tang Y, Ontiveros-Valencia A, Feng L, Zhou C, Krajmalnik-Brown R, Rittmann BE (2013) A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnol Bioeng 110:763–772

    Article  CAS  Google Scholar 

  • Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE (2012) A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution. Environ Sci Technol 46:1598–1607

    Article  CAS  Google Scholar 

  • Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746

    Article  CAS  Google Scholar 

  • Ucar D, Cokgor EU, Sahinkaya E (2016a) Evaluation of nitrate and perchlorate reduction using sulfur-based autotrophic and mixotrophic denitrifying processes. Water Sci Tech-W Sup 16:208–218

    Article  CAS  Google Scholar 

  • Ucar D, Ubay Cokgor E, Sahinkaya E (2016b) Simultaneous nitrate and perchlorate reduction using sulfur-based autotrophic and heterotrophic denitrifying processes. J Chen Technol Biot 91:1471–1477

    Article  CAS  Google Scholar 

  • Upadhyaya G, Kotlarz N, Togna P, Raskin L (2015) Carbohydrate-based electron donor for biological nitrate and perchlorate removal. J Am Water Works Ass 107:674–684

    Article  Google Scholar 

  • Van der Zee FR, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Article  CAS  Google Scholar 

  • Van Ginkel SW, Ahn CH, Badruzzaman M, Roberts DJ, Lehman SG, Adham SS, Rittmann BE (2008) Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR). Water Res 42:4197–4205

    Article  CAS  Google Scholar 

  • Van Ginkel SW, Tang Y, Rittmann BE (2011) Impact of precipitation on the treatment of real ion-exchange brine using the H-2-based membrane biofilm reactor. Water Sci Technol 63:1453–1458

    Article  CAS  Google Scholar 

  • Van Trump JI, Coates JD (2009) Thermodynamic targeting of microbial perchlorate reduction by selective electron donors. ISME J 3:466–476

    Article  CAS  Google Scholar 

  • Velizarov S, Rodrigues CM, Reis MA, Crespo JG (2000) Mechanism of charged pollutants removal in an ion exchange membrane bioreactor: drinking water denitrification. Biotechnol Bioeng 71:245–254

    Article  CAS  Google Scholar 

  • Wan D, Liu Y, Niu Z, Xiao S, Li D (2016) Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing. Biodegradation 27:47–57

    Article  CAS  Google Scholar 

  • Wan D, Liu Y, Wang Y, Li Q, Jin J, Xiao S (2019) Sulfur disproportionation tendencies in a sulfur packed bed reactor for perchlorate bio-autotrophic reduction at different temperatures and spatial distribution of microbial communities. Chemosphere 215:40–49

    Article  CAS  Google Scholar 

  • Wan D, Liu Y, Wang Y, Wang H, Xiao S (2017) Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: kinetics and bacterial community structure. Water Res 108:280–292

    Article  CAS  Google Scholar 

  • Wang C, Lippincott L, Meng XG (2008) Kinetics of biological perchlorate reduction and pH effect. J Hazard Mater 153:663–669

    Article  CAS  Google Scholar 

  • Wang DB, Wang YL, Liu YW, Ngo HH, Lian Y, Zhao JW, Chen F, Yang Q, Zeng GM, Li XM (2017a) Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment plants? Bioresour Technol 234:456–465

    Article  CAS  Google Scholar 

  • Wang Y, Jin L, Deshusses MA, Matsumoto MR (2013) The effects of various amendments on the biostimulation of perchlorate reduction in laboratory microcosm and flowthrough soil columns. Chem Eng J 232:388–396

    Article  CAS  Google Scholar 

  • Wang YL, Wang DB, Yang Q, Zeng GM, Li XM (2017b) Wastewater opportunities for denitrifying anaerobic methane oxidation. Trends Biotechnol 35:799–802

    Article  CAS  Google Scholar 

  • Wang ZC, Gao MC, Zhang Y, She ZL, Ren Y, Wang Z, Zhao CC (2014) Perchlorate reduction by hydrogen autotrophic bacteria in a bioelectrochemical reactor. J Environ Manag 142:10–16

    Article  CAS  Google Scholar 

  • Weijma J, Chi TM, Pol LWH, Stams AJM, Lettinga G (2003) The effect of sulphate on methanol conversion in mesophilic upflow anaerobic sludge bed reactors. Process Biochem 38:1259–1266

    Article  CAS  Google Scholar 

  • Wen LL, Yang Q, Zhang ZX, Yi YY, Tang Y, Zhao HP (2016) Interaction of perchlorate and trichloroethene bioreductions in mixed anaerobic culture. Sci Total Environ 571:11–17

    Article  CAS  Google Scholar 

  • Wen LL, Zhang Y, Chen JX, Zhang ZX, Yi YY, Tang Y, Rittmann BE, Zhao HP (2017) The dechlorination of TCE by a perchlorate reducing consortium. Chem Eng J 313:1215–1221

    Article  CAS  Google Scholar 

  • Wu XQ, Yang Q, Xu DC, Zhong Y, Luo K, Li XM, Chen HB, Zeng GM (2013) Simultaneous adsorption/reduction of bromate by nanoscale zerovalent iron supported on modified activated carbon. Ind Eng Chem Res 52:12574–12581

    Article  CAS  Google Scholar 

  • Xie D, Yu H, Li C, Ren Y, Wei C, Feng C (2014) Competitive microbial reduction of perchlorate and nitrate with a cathode directly serving as the electron donor. Electrochim Acta 133:217–223

    Article  CAS  Google Scholar 

  • Xie T, Yang Q, Winkler MKH, Wang D, Zhong Y, An H, Chen F, Yao F, Wang X, Wu J, Li X (2018) Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J Hazard Mater 357:244–252

    Article  CAS  Google Scholar 

  • Xu X, Gao B, Jin B, Zhen H, Wang X, Dai M (2015a) Physicochemical characteristics of epichlorohydrin, pyridine and trimethylamine functionalized cotton stalk and its adsorption/desorption properties for perchlorate. J Colloid Interf Sci 440:219–228

    Article  CAS  Google Scholar 

  • Xu X, Gao B, Jin B, Zhen H, Wang X, Dai M (2015b) Study of microbial perchlorate reduction: considering of multiple pH, electron acceptors and donors. J Hazard Mater 285:228–235

    Article  CAS  Google Scholar 

  • Yang Q, Yao FB, Zhong Y, Wang DB, Chen F, Sun J, Hua S, Li SB, Li XM, Zeng GM (2016) Catalytic and electrocatalytic reduction of perchlorate in water—a review. Chem Eng J 306:1081–1091

    Article  CAS  Google Scholar 

  • Yao FB, Zhong Y, Yang Q, Wang DB, Chen F, Zhao JW, Xie T, Jiang C, An HX, Zeng GM, Li XM (2017) Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. J Hazard Mater 323:602–610

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotech 18:213–219

    Article  CAS  Google Scholar 

  • Ye L, You H, Yao J, Su HL (2012) Water treatment technologies for perchlorate: a review. Desalination 298:1–12

    Article  CAS  Google Scholar 

  • Yu XY, Amrhein C, Deshusses MA, Matsumoto MR (2006) Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron. Environ Sci Technol 40:1328–1334

    Article  CAS  Google Scholar 

  • Yu XY, Amrhein C, Deshusses MA, Matsumoto MR (2007) Perchlorate reduction by autotrophic bacteria attached to zerovalent iron in a flow-through reactor. Environ Sci Technol 41:990–997

    Article  CAS  Google Scholar 

  • Zhang HS, Bruns MA, Logan BE (2002) Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium. Environ Microbiol 4:570–576

    Article  CAS  Google Scholar 

  • Zhang Y, Chen JX, Wen LL, Tang Y, Zhao HP (2016) Effects of salinity on simultaneous reduction of perchlorate and nitrate in a methane-based membrane biofilm reactor. Environ Sci Pollut Res Int 23:24248–24255

    Article  CAS  Google Scholar 

  • Zhao HP, Ilhan ZE, Ontiveros-Valencia A, Tang Y, Rittmann BE, Krajmalnik-Brown R (2013a) Effects of multiple electron acceptors on microbial interactions in a hydrogen-based biofilm. Environ Sci Technol 47:7396–7403

    Article  CAS  Google Scholar 

  • Zhao HP, Ontiveros-Valencia A, Tang Y, Kim BO, Ilhan ZE, Krajmalnik-Brown R, Rittrnann BE (2013b) Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environ Sci Technol 47:1565–1572

    Article  CAS  Google Scholar 

  • Zhao HP, Ontiveros-Valencia A, Tang Y, Kim BO, Vanginkel S, Friese D, Overstreet R, Smith J, Evans P, Krajmalnik-Brown R, Rittmann BE (2014) Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors. Water Res 54:115–122

    Article  CAS  Google Scholar 

  • Zhao HP, Van Ginkel S, Tang YN, Kang DW, Rittmann BE, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45:10155–10162

    Article  CAS  Google Scholar 

  • Zhu IX, Getting T, Bruce D (2010) Review of biologically active filters in drinking water applications. J Am Water Works Ass 102:67–77

    Article  CAS  Google Scholar 

  • Zhu Y, Gao N, Chu W, Wang S, Xu J (2016a) Bacterial reduction of highly concentrated perchlorate: kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere 148:188–194

    Article  CAS  Google Scholar 

  • Zhu Y, Wu M, Gao N, Chu W, Wang S (2016b) Impacts of nitrate and electron donor on perchlorate reduction and microbial community composition in a biologically activated carbon reactor. Chemosphere 165:134–143

    Article  CAS  Google Scholar 

  • Zhu Y, Wu M, Gao N, Chu W, Zhao L, Wang Q (2019) Enhanced dissimilatory perchlorate reduction in the presence of humic acids or 2,6-anthraquinone disulfonate as quinone redox mediators. Chem Eng J 357:75–83

    Article  CAS  Google Scholar 

  • Zhang C, Guo J, Lian J, Song Y, Lu C, Li H (2018) Bio-mixotrophic perchlorate reduction to control sulfate production in a step-feed sulfur-based reactor: A study of kinetics, ORP and bacterial community structure. Bioresour Technol 269:40-49

Download references

Funding

This research was financially supported by the project of National Natural Science Foundation of China (NSFC) (Nos. 51779088, 51709104), China Postdoctoral Science Foundation (2018M640595), and the project Postdoctoral Innovation Support Program (BX20180290).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhong or Qi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhong, Y., Yao, F. et al. Biological perchlorate reduction: which electron donor we can choose?. Environ Sci Pollut Res 26, 16906–16922 (2019). https://doi.org/10.1007/s11356-019-05074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05074-5

Keywords

Navigation