Skip to main content
Log in

Initial studies on aBacillus subtilis mutant lacking the dnaK-homologue protein

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A sequence of 412bp, spanning the terminal half of thegrpE and the proximal portion of thednaK-homologues inBacillus subtilis, was amplified with PCR technology. This fragment was cloned into pJH101, anEscherichia coli plasmid, and transformed intoB. subtilis strain YB886. Several chloramphenicol-resistant colonies were obtained from this transformation. The integration of the plasmid into theB. subtilis chromosome was verified by restriction endonuclease analysis and Southern hybridization. Strain BUL101, a chloramphenicol-resistant transformant, lacked the DnaK-homologue as demonstrated by two-dimensional polyacrylamide gel electrophoresis and Western blot analysis. BUL101 grew at slower rates than parental cells at both 37°C and 48°C, produced abnormal cell shapes at 48°C, and was unable to grow at 51°C. The 412bp fragment did not exhibit detectable promoter activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Arnosti DN, Singer VL, Chamberlin MJ (1986) Characterization of heat shock inBacillus subtilis. J Bacteriol 168:1243–1249

    PubMed  Google Scholar 

  2. Boylan RJ, Mendelson NH, Brooks D, Young FE (1972) Regulation of the bacterial cell wall: analysis of a mutant ofBacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110:281–290

    PubMed  Google Scholar 

  3. Bukau B, Walker GC (1989a) Cellular defects caused by deletion of theEscherichia coli dnaK gene indicate roles for heat shock proteins in normal metabolism. J Bacteriol 171:2337–2346

    PubMed  Google Scholar 

  4. Bukau B, Walker GC (1989b)dnaK52 mutants ofEscherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. J Bacteriol 171:6030–6038

    PubMed  Google Scholar 

  5. Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation ofEscherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    PubMed  Google Scholar 

  6. Ferrari FA, Ferrari E, Hoch JA (1982) Chromosomal location of aBacillus subtilis DNA fragment uniquely transcribed by sigma 28-containing RNA polymerase. J Bacteriol 152:780–785

    PubMed  Google Scholar 

  7. Ferrari FA, Ngyuen A, Lang D, Hoch JA (1983) Construction and properties of an integrable plasmid forBacillus subtilis. J Bacteriol 154:1513–1515

    PubMed  Google Scholar 

  8. Friedman DI, Olson ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48:299–325

    PubMed  Google Scholar 

  9. Hearne CM, Ellar DJ (1989) Nucleotide sequence of aBacillus subtilis gene homologous to thednaK gene ofEscherichia coli. Nucleic Acids Res 17:8373

    PubMed  Google Scholar 

  10. Miller BS, Kennedy TE, Streips UN (1991) Molecular characterization of specific heat shock proteins inBacillus subtilis. Current Microbiol 22:231–236

    Google Scholar 

  11. Mongkolouk S, Chang Y, Reynolds RB, Lovett PS (1983) Restriction fragments that exert promoter activity during postexponential growth ofBacillus subtilis. J Bacteriol 155:1399–1406

    PubMed  Google Scholar 

  12. Neidhardt FC, VanBogelen RA (1987) Heat shock response. In: Neidhardt FC (ed)Escherichia coli andSalmonella typhimurium: cellular and molecular biology. Washington D.C.: American Society for Microbiology Press, pp 1334–1345

    Google Scholar 

  13. Neidhardt FC, VanBogelen RA, Vaughn V (1984) The genetics and regulation of heat shock proteins. Annu Rev Genet 18:295–329

    PubMed  Google Scholar 

  14. O'Farrell (1975) High resolution two dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  15. Paek K, Walker GC (1987)Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169:283–290

    PubMed  Google Scholar 

  16. Richter A, Hecker M (1986) Heat-shock proteins inBacillus subtilis: a two dimensional gel electrophoresis study. FEMS Microbiol Lett 36:69–71

    Google Scholar 

  17. Saiki RK, Gelfand DH, Stoffel S, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491

    PubMed  Google Scholar 

  18. Sakakibara Y (1988) ThednaK gene ofEscherichia coli functions in initiation of chromosome replication. J Bacteriol 170:972–979

    PubMed  Google Scholar 

  19. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–527

    PubMed  Google Scholar 

  20. Spizizen J (1958) Transformation of biochemically deficient strains ofBacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

    Google Scholar 

  21. Streips UN, Polio F (1985) Heat shock proteins in bacilli. J Bacteriol 162:434–437

    PubMed  Google Scholar 

  22. Todd JA, Hubbard TJP, Travers AA, Ellar DJ (1985) Heat shock proteins during growth and sporulation ofBacillus subtilis. FEBS Lett 188:209–214.

    PubMed  Google Scholar 

  23. Wachlin G, Hecker M (1984) Proteinbiosynthesen nach Hitzeschock inBacillus subtilis. Z Allgem Mikrobiol 24:397–401

    Google Scholar 

  24. Wetzstein M, Schumann W (1990) Nucleotide sequence of aBacillus subtilis gene homologous to thegrpE gene ofE. coli located immediately upstream of thednaK gene. Nucleic Acids Res 18:1289

    PubMed  Google Scholar 

  25. Wetzstein M, Dedio J, Schumann W (1990) Complete nucleotide sequence of theBacillus subtilis dnaK gene. Nucleic Acids Res 18:2172

    PubMed  Google Scholar 

  26. Zylicz M, Ang D, Liberek K, Georgopoulos C (1989) Initiation of lambda DNA replication with the purified host- and bacteriophage-encoded proteins: the role of the DnaK, DnaJ, and GrpE heat shock proteins. EMBO J 8:1601–1608

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staples, R.R., Miller, B.S., Hoover, M.L. et al. Initial studies on aBacillus subtilis mutant lacking the dnaK-homologue protein. Current Microbiology 24, 143–149 (1992). https://doi.org/10.1007/BF01568979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01568979

Keywords

Navigation