Skip to main content

Advertisement

Log in

Gene Overexpression in Streptomyces hygroscopicus Associated with DNA Amplification

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The genetics of the Streptomyces hygroscopicus strain 10–22 is of interest due to the ability of this strain to produce antifungal compounds. Strain T110 was obtained through insertional mutagenesis of strain 10–22 and was found to have undergone DNA amplification, as determined by both conventional and pulsed-field gel electrophoresis (PFGE). pIJ702, the vector used for insertional mutagenesis, was shown to have integrated into and co-amplified with the chromosomal DNA sequence of T110, as pIJ702 hybridized predominantly with two of the three amplified BamHI fragments. The amplified DNA sequence in T110 is 10.8 kb in length and consists of 5.18 kb of Streptomyces chromosomal DNA and the entire 5.62 kb pIJ702 sequence. Sequence analysis of the 5.18 kb chromosomal sequence revealed two open reading frames, one encoding a putative IS5 family transposase and the other encoding a putative dihydroxy-acid dehydratase. Real-time PCR analysis showed that expression of the putative dehydratase gene in T110 is about 50 times greater than in the wild-type strain, consistent with the high level of amplification of this DNA region, and therefore this system has the potential for producing economically or clinically important molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aigle B, Schneider D, Morilhat C, Vandewiele D, Dary A, Holl AC, Simonet JM, Decaris B (1996) An amplifiable and deletable locus of Streptomyces ambofaciens RP181110 contains a very large gene homologous to polyketide synthase genes. Microbiology 142(Pt 10):2815–2824. doi:10.1099/13500872-142-10-2815

    Article  CAS  PubMed  Google Scholar 

  2. Altenbuchner J, Cullum J (1984) DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Mol General Genet: MGG 195(1–2):134–138. doi:10.1007/BF00332735

    Article  CAS  Google Scholar 

  3. Altenbuchner J, Cullum J (1985) Structure of an amplifiable DNA sequence in Streptomyces lividans 66. Mol General Genet: MGG 201(2):192–197. doi:10.1007/BF00425659

    Article  CAS  Google Scholar 

  4. Berger B, Haas D (2001) Transposase and cointegrase: specialized transposition proteins of the bacterial insertion sequence IS21 and related elements. Cell Mol Life Sci: CMLS 58(3):403–419. doi:10.1007/PL00000866

    Article  CAS  PubMed  Google Scholar 

  5. Betzler M, Dyson P, Schrempf H (1987) Relationship of an unstable argG gene to a 5.7-kilobase amplifiable DNA sequence in Streptomyces lividans 66. J Bacteriol 169(10):4804–4810. doi:10.1128/jb.169.10.4804-4810.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Betzler M, Tlolka I, Schrempf H (1997) Amplification of a Streptomyces lividans 4.3 kb DNA element causes overproduction of a novel hypha- and vesicle-associated protein. Microbiology 143((Pt 4)):1243–1252. doi:10.1099/00221287-143-4-1243

    Article  CAS  PubMed  Google Scholar 

  7. Birch A, Hausler A, Vogtli M, Krek W, Hutter R (1989) Extremely large chromosomal deletions are intimately involved in genetic instability and genomic rearrangements in Streptomyces glaucescens. Mol General Genet: MGG 217(2–3):447–458. doi:10.1007/BF02464916

    Article  CAS  Google Scholar 

  8. Catakli S, Andrieux A, Leblond P, Decaris B, Dary A (2003) Spontaneous chromosome circularization and amplification of a new amplifiable unit of DNA belonging to the terminal inverted repeats in Streptomyces ambofaciens ATCC 23877. Arch Microbiol 179(6):387–393. doi:10.1007/s00203-003-0534-7

    Article  CAS  PubMed  Google Scholar 

  9. Dary A, Bourget N, Girard N, Simonet JM, Decaris B (1992) Amplification of a particular DNA sequence in Streptomyces ambofaciens RP181110 reversibly prevents spiramycin production. Res Microbiol 143(1):99–112. doi:10.1016/0923-2508(92)90039-Q

    Article  CAS  PubMed  Google Scholar 

  10. Dary A, Martin P, Wenner T, Decaris B, Leblond P (2000) DNA rearrangements at the extremities of the Streptomyces ambofaciens linear chromosome: evidence for developmental control. Biochimie 82(1):29–34. doi:10.1016/S0300-9084(00)00348-5

    Article  CAS  PubMed  Google Scholar 

  11. Demuyter P, Leblond P, Decaris B, Simonet JM (1988) Characterization of two families of spontaneously amplifiable units of DNA in Streptomyces ambofaciens. J Gen Microbiol 134(7):2001–2007. doi:10.1099/00221287-134-7-2001

    CAS  PubMed  Google Scholar 

  12. Dyson P, Schrempf H (1987) Genetic instability and DNA amplification in Streptomyces lividans 66. J Bacteriol 169(10):4796–4803. doi:10.1128/jb.169.10.4796-4803.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eichenseer C, Altenbuchner J (1994) The very large amplifiable element AUD2 from Streptomyces lividans 66 has insertion sequence-like repeats at its ends. J Bacteriol 176(22):7107–7112. doi:10.1128/jb.176.22.7107-7112.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fishman SE, Hershberger CL (1983) Amplified DNA in Streptomyces fradiae. J Bacteriol 155(2):459–466

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fishman SE, Rosteck PR Jr, Hershberger CL (1985) A 2.2-kilobase repeated DNA segment is associated with DNA amplification in Streptomyces fradiae. J Bacteriol 161(1):199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flett F, Cullum J (1987) DNA deletions in spontaneous chloramphenicol-sensitive mutants of Streptomyces coelicolor A 3(2) and Streptomyces lividans 66. Mol General Genet: MGG 207(2–3):499–502. doi:10.1007/BF00331621

    Article  CAS  Google Scholar 

  17. Hausler A, Birch A, Krek W, Piret J, Hutter R (1989) Heterogeneous genomic amplification in Streptomyces glaucescens: structure, location and junction sequence analysis. Mol General Genet: MGG 217(2–3):437–446. doi:10.1007/BF02464915

    Article  CAS  Google Scholar 

  18. Hornemann U, Otto CJ, Zhang XY (1989) DNA amplification in Streptomyces achromogenes subsp. rubradiris is accompanied by a deletion, and the amplified sequences are conditionally stable and can be eliminated by two pathways. J Bacteriol 171(11):5817–5822. doi:10.1128/jb.169.6.2360-2366.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hornemann U, Zhang XY, Otto CJ (1993) Transferable Streptomyces DNA amplification and co amplification of foreign DNA sequences. J Bacteriol 175(4):1126–1133. doi:10.1128/jb.175.4.1126-1133.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jian X, Pang X, Yu Y, Zhou X, Deng Z (2006) Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie Van Leeuwenhoek 90(1):29–39. doi:10.1007/s10482-006-9058-x

    Article  CAS  PubMed  Google Scholar 

  21. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (eds) (2000) Practical Streptomyces genetics, 2nd edn. John Innes Foundation, Norwich

    Google Scholar 

  22. Pang X, Zhou X, Sun Y, Deng Z (2002) Physical map of the linear chromosome of Streptomyces hygroscopicus 10-22 deduced by analysis of overlapping large chromosomal deletions. J Bacteriol 184(7):1958–1965. doi:10.1128/JB.184.7.1958-1965.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin Z (1992) Ph. D, Huazhong Agricultural University, Wuhan

  24. Qin Z, Peng K, Zhou X, Liang R, Zhou Q, Chen H, Hopwood DA, Kieser T, Deng Z (1994) Development of a gene cloning system for Streptomyces hygroscopicus subsp. yingchengensis, a producer of three useful antifungal compounds, by elimination of three barriers to DNA transfer. J Bacteriol 176(7):2090–2095. doi:10.1128/jb.176.7.2090-2095.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Redenbach M, Kleinert E, Stoll A (2000) Identification of DNA amplifications near the center of the Streptomyces coelicolor M145 chromosome. FEMS Microbiol Lett 191(1):123–129. doi:10.1111/j.1574-6968.2000.tb09328.x

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook JaR DW (ed) (2001) Molecular cloning: a Laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  27. Schmid E, Buchler C, Altenbuchner J (1999) AUD4, a new amplifiable element from Streptomyces lividans. Microbiology 145(Pt 12):3331–3341. doi:10.1099/00221287-145-12-3331

    Article  CAS  PubMed  Google Scholar 

  28. Volff JN, Altenbuchner J (1998) Genetic instability of the Streptomyces chromosome. Mol Microbiol 27(2):239–246. doi:10.1046/j.1365-2958.1998.00652.x

    Article  CAS  PubMed  Google Scholar 

  29. Volff JN, Eichenseer C, Viell P, Piendl W, Altenbuchner J (1996) Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol 21(5):1037–1047. doi:10.1046/j.1365-2958.1996.761428.x

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Yu Y, Tang K, Liu W, He X, Huang X, Deng Z (2010) Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-22. Appl Environ Microbiol 76(7):2335–2344. doi:10.1128/AEM.01790-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Widenbrant EM, Tsai HH, Chen CW, Kao CM (2008) Spontaneous amplification of the actinorhodin gene cluster in Streptomyces coelicolor involving native insertion sequence IS466. J Bacteriol 190(13):4754–4758. doi:10.1128/JB.00131-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci USA 103(25):9661–9666. doi:10.1073/pnas.0603251103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the State Key Laboratory of Microbial Metabolism (Shanghai Jiao Tong University) Open Project Fund (Project No. MMLKF15-01) and by the Innovation Project of Shandong Academy of Medical Sciences (Project No. 201604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Zhang, P., Gu, Y. et al. Gene Overexpression in Streptomyces hygroscopicus Associated with DNA Amplification. Curr Microbiol 74, 979–986 (2017). https://doi.org/10.1007/s00284-017-1278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1278-y

Keywords

Navigation