Skip to main content
Log in

Theq-difference operator, the quantum hyperplane, Hilbert spaces of analytic functions andq-oscillators

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

It is shown that the differential calculus of Wess and zumino for the quantum hyperplane is intimately related to theq-difference operator acting on then-dimensional complex space ℂn. An explicit transformation relates the variables and theq-difference operators on ℂn to the variables and the quantum derivatives on the quantum hyperplane. For real values of the quantum parameterq, the consideration of the variables and the derivatives as hermitean conjugates yields a quantum deformation of the Bargmann-Segal Hilbert space of analytic functions on ℂn. Physically such a system can be interpreted as the quantum deformation of then dimensional harmonic oscillator invariant under the unitary quantum groupU q (n) with energy eigenvalues proportional to the basic integers. Finally, a construction of the variables and quantum derivatives on the quantum hyperplane in terms of variables and ordinary derivatives on ℂn is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wess, B. Zumino: Covariant differential calculus on the quantum hyperplane. CERN preprint TH-5697/90 (1990)

  2. S.L. Woronowicz: Comm. Math. Phys. 122 (1989) 125

    Google Scholar 

  3. Yu. I. Manin: Quantum groups and noncommutative geometry. Montreal University preprint CRM-1561 (1988)

  4. F.H. Jackson: Q.J. Pure. Appl. Math. 41 (1910) 193; L.J. Slater: Generalized hypergeometric functions, London: Cambridge University Press 1966

    Google Scholar 

  5. M. Arik, D.D. Coon: J. Math. Phys. 17 (1975) 524

    Google Scholar 

  6. F.H. Jackson: Q.J. Math. Oxford Ser. 2 (1951) 1

    Google Scholar 

  7. V. Bargmann: Commun. Pure Appl. Math. 14 (1961) 187; 20 (1967) 1; Rev. Mod. Phys. 34 (1962) 829; I.E. Segal: I. J. Math. 6 (1962) 500; Mathematical problems of relativistic physics (Am. Math. Soc., Providence, R.I., 1963)

    Google Scholar 

  8. J.R. Klauder, E.C.G. Sudarshan: Quantum optics. New York: Benjamin 1968

    Google Scholar 

  9. J. Weyers: The quantum groupsGL q (n) and Weyl-Heisenberg operators, CERN preprint TH-5633/90 (1990)

  10. M. Baker, D.D. Coon, S. Yu: Phys. Rev. D5 (1972) 1429

    Google Scholar 

  11. D.D. Coon: Phys. Lett. 29B (1969) 669; M. Baker, D.D. Coon: Phys. Rev. D2 (1970) 2349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arik, M. Theq-difference operator, the quantum hyperplane, Hilbert spaces of analytic functions andq-oscillators. Z. Phys. C - Particles and Fields 51, 627–632 (1991). https://doi.org/10.1007/BF01565589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01565589

Keywords

Navigation