Skip to main content
Log in

\(L^p\)-\(L^q\) Boundedness of Fourier Multipliers Associated with the Anharmonic Oscillator

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we study the \(L^p\)-\(L^q\) boundedness of the Fourier multipliers in the setting where the underlying Fourier analysis is introduced with respect to the eigenfunctions of an anharmonic oscillator A. Using the notion of a global symbol that arises from this analysis, we extend a version of the Hausdorff–Young–Paley inequality that guarantees the \(L^p\)-\(L^q\) boundedness of these operators for the range \(1<p \le 2 \le q <\infty \). The boundedness results for spectral multipliers acquired, yield as particular cases Sobolev embedding theorems and time asymptotics for the \(L^p\)-\(L^q\) norms of the heat kernel associated with the anharmonic oscillator. Additionally, we consider functions f(A) of the anharmonic oscillator on modulation spaces and prove that Linskĭi’s trace formula holds true even when f(A) is simply a nuclear operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The singular values of a compact operator T between Hilbert spaces are the square roots of non-negative eigenvalues of the self-adjoint operator \(T^{*}T\), where \(T^{*}\) denotes the adjoint of T.

References

  1. Akylzhanov, R., Nursultanov, E., Ruzhansky, M.: Hardy–Littlewood–Paley inequalities and Fourier multipliers on \(SU(2)\). Stud. Math. 234(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akylzhanov, R., Nursultanov, E., Ruzhansky, M.: Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and \(L^p\)-\(L^q\) Fourier multipliers on compact homogeneous manifolds. J. Math. Anal. Appl. 479(2), 1519–1548 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akylzhanov, R., Ruzhansky, M.: \(L^p-L^q\) multipliers on locally compact groups. J. Funct. Anal. (2019). https://doi.org/10.1016/j.jfa.2019.108324

    Article  MATH  Google Scholar 

  4. Anker, J.-P.: Fourier multipliers on Riemannian symmetric space of the noncompact type. Ann. Math. 132(3), 597–628 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anker, J.-P.: Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces. Duke Math. J. 65(2), 257–297 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bagchi, S., Thangavelu, S.: On Hermite pseudo-multipliers. J. Funct. Anal. 268(1), 140–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barraza, E.S., Cardona, D.: On nuclear \(L^p\) multipliers associated to the harmonic oscillator. In: Ruzhansky, M., Delgado, J. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries, Springer Proceedings in Mathematics and Statistics, Imperial College, London, 2016. Springer (2019)

  8. Bergh, J., Löfström, J.: Interpolation Spaces, Grundlehren der mathematischen Wissenschaften (1976)

  9. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations, Springer, New York (2002)

    Google Scholar 

  10. Buzano, E., Bogiatto, P., Rodino, L.: Global Hypoellipticity and Spectral Theory. Mathematical Research, vol. 92. Akademie Verlag, Berlin (1996)

    MATH  Google Scholar 

  11. Cardona, D., Ruzhansky, M.: Littlewood–Paley theorem, Nikolskii inequality, Besov spaces, Fourier and spectral multipliers on graded Lie groups (2016). arXiv:1610.04701

  12. Cardona, D., Ruzhansky, M.: Hörmander condition for pseudo-multipliers associated to the harmonic oscillator (2018). arXiv:1810.01260

  13. Cardona, D.: On the nuclear trace of Fourier Integral Operators. Rev. Integr. temas Mat. 37(2), 219–249 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cardona, D.: Nuclear pseudo-differential operators in Besov spaces on compact Lie groups. J. Fourier Anal. Appl. 23(5), 1238–1262 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cardona, D., Kumar, V.: \(L^p\)-boundedness and \(L^p\)-nuclearity of multilinear pseudo-differential operators on \({\mathbb{Z} }^n\) and the torus \({\mathbb{T} }^n\). J. Fourier Anal. Appl. 25(6), 2973–3017 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cardona, D., Kumar, V.: Multilinear analysis for discrete and periodic pseudo-differential operators in \(L^p\) spaces. Rev. Integr. temas Mat. 36(2), 151–164 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cardona, D., Corral, C., Kumar, V.: Dixmier traces for discrete pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 11(2), 647–656 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chatzakou, M., Delgado, M., Ruzhansky, M.: On a class of anharmonic oscillators. J. Math. Pures Appl. 9(153), 1–29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chatzakou, M., Kumar, V.: \(L^p-L^q\) boundedness of spectral multipliers of the anharmonic oscillator. C. R. Math. Acad. Sci. Paris 360, 343–347 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Chemin, J.Y., Xu, C.J.: Sobolev embedding in Weyl–Hörmander calculus. In: Colombini, F., Lerner, N. (eds.) Geometrical Optics and Related Topics. Progress in Nonlinear Differential Equations and Their Applications, vol. 32. Birkhäuser, Boston (1997)

    Google Scholar 

  21. Delgado, J., Ruzhansky, M.: Fourier multipliers, symbols, and nuclearity on compact manifolds. J. Anal. Math. 135(2), 757–800 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Delgado, J., Ruzhansky, M.: \(L^p\)-nuclearity, traces, and Grothendieck–Lidskiĭ formula on compact Lie groups. J. Math. Pures Appl 102(1), 153–172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Delgado, J., Wong, M.W.: \(L^p\)-nuclear pseudo-differential operators on \({\mathbb{Z} }\) and \({\mathbb{S} }^1\). Proc. Am. Math. Soc. 141(11), 3935–3942 (2013)

    Article  MATH  Google Scholar 

  24. Delgado, J., Ruzhansky, M., Wang, B.: Approximation property and nuclearity on mixed-norm \(L^p\), modulation and Wiener amalgam spaces. J. Lond. Math. Soc. 94(2), 391–408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Delgado, J., Ruzhansky, M., Tokmagambetov, M.: Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary. J. Math. Pures Appl. 107, 758–783 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5(2), 109–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gröchenig, K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc, Boston (2001)

    Book  MATH  Google Scholar 

  28. Grothendieck, A.: Produits Tensoriels Toplogiques et Espaces Nucléaires. Mem. Am. Math. Soc. 69, 193–200 (1955)

    Google Scholar 

  29. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104(1–2), 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumar, V., Mondal, S.S.: Schatten Class and nuclear pseudo-differential operators on homogeneous spaces of compact groups. Monatsh. Math. 197(1), 149–176 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumar, V., Ruzhansky, M.: \(L^p\)-\(L^q\) boundedness of \((k, a)\)-Fourier multipliers with applications to nonlinear equations. Int. Math. Res. Not. (2021). https://doi.org/10.1093/imrn/rnab256

    Article  Google Scholar 

  32. Kumar, V., Ruzhansky, M.: Hardy–Littlewood inequality and \(L^p\)-\(L^q\) Fourier multipliers on compact hypergroups. J. Lie Theory 32(2), 475–498 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Lidkskiĭ, V.B.: Non-self adjoint operators with a trace. Dokl. Ak. Nauk. SSSR 125, 485–487 (1959)

    Google Scholar 

  34. Littlewood, J.E., Paley, R.E.A.: Theorems on Fourier series and power series (II). Proc. Lond. Mater. Soc. s2–42, 52–89 (1937)

    Article  MATH  Google Scholar 

  35. Nicola, F., Rodino, L.: Global Pseudo-differential Calculus on Euclidean Spaces. Pseudo-Differential Operators. Theory and Applications, vol. 4. Birkhäuser Verlag, Basel (2010)

    Book  MATH  Google Scholar 

  36. Nursultanov, E.D., Tleukhanova, N.T.: Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue space. Funkt. Anal. i Prilozhen. 34(2), 151–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Parmegianni, A.: Spectral Theory of Non-commutative Harmonic Oscillators: An Introduction. Lecture Notes in Mathematics, vol. 1992. Springer, Berlin (2010)

    Book  Google Scholar 

  38. Pietsch, A.: Operator Ideals. North-Holland Mathematical Library, vol. 20. North-Holland Publishing Co., Amsterdam (1980). (Translated from German by the author)

    MATH  Google Scholar 

  39. Reinov, O.I., Laif, Q.: Grothendieck–Lindskiĭ theorem for subspaces of \(L^p\) spaces. Math. Nachr. 286(2–3), 282–297 (2013)

    Google Scholar 

  40. Ruzhansky, M., Wirth, J.: \(L^p\) Fourier multipliers on compact Lie groups. Math. Z. 280, 621–642 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ruzhansky, M., Tokmagambetov, N.: Nonharmonic analysis of boundary value problems. Int. Math. Res. Not. 12, 3548–3615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions (MN-42), Vol. 42, vol. 103. Princeton University Press, Princeton (1993)

    Book  Google Scholar 

  43. Toft, J.: Schatten–von Neumann properties in the Weyl calculus and calculus of metrics on symplectic vector space. Ann. Glob. Anal. Geom. 30(2), 169–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Toft, J.: Schatten properties for pseudo-differential on modulation spaces. In: Pseudo-differential Operators. Lecture Notes in Mathematics, vol. 1949, pp. 175–202. Springer, Berlin (2008)

  45. Voros, A.: Oscillator quartic et méthodes semi-classiques, Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi”Séminaire Goulaouic-Schwart” (1979–1980), Exposé no. 6, 6 p

  46. Weyl, H.: Inequalities between the two kinds of eigenvalues of linear transformation. Proc. Natl Acad. Sci. USA 35, 408–411 (1949)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable comments and suggestions which helped to improve the manuscript. The authors are also grateful to Professor Michael Ruzhansky for his valuable suggestions. The authors are supported by the FWO Odysseus 1 Grant G.0H94.18N: Analysis and Partial Differential Equations, the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant Number 01M01021). Marianna Chatzakou is a Postdoctoral Fellow of the Research Foundation—Flanders (FWO) under the Postdoctoral Grant No. 12B1223N. Vishvesh Kumar is also supported FWO Senior Research Grant G011522N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Chatzakou.

Additional information

Communicated by Pencho Petrushev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzakou, M., Kumar, V. \(L^p\)-\(L^q\) Boundedness of Fourier Multipliers Associated with the Anharmonic Oscillator. J Fourier Anal Appl 29, 73 (2023). https://doi.org/10.1007/s00041-023-10047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-023-10047-x

Keywords

Mathematics Subject Classification

Navigation