Skip to main content
Log in

Operators of Almost Hadamard Type and Hardy–Littlewood Operator in the Space of Entire Functions of Several Complex Variables

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We introduce the class of operators of almost Hadamard type, that is, linear continuous operators that act on a locally convex space containing all polynomials and have the property that the homogeneous polynomials of any given degree form an invariant subspace. The Hadamard-type (diagonal) operators, for which each monomial is an eigenvector, are a special case of operators of almost Hadamard type. The operators of almost Hadamard type are studied in the space of all entire functions of several complex variables. The results are used to describe all linear operators continuous in this space and commuting in it with the multidimensional analog of the Hardy–Littlewood operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Linchuk, “Diagonal operators in spaces of analytic functions and their applications,” in Topical Problems of Function Theory (Izd. Rostov. Gos. Univ., Rostov-on-Don, 1987), pp. 118–121 [in Russian].

    MathSciNet  Google Scholar 

  2. A. V. Bratishchev, “On linear operators whose symbol is a function of the product of its arguments,” Dokl. Ross. Akad. Nauk 365 (1), 9–12 (1999).

    MathSciNet  MATH  Google Scholar 

  3. A. V. Bratishchev, “On Gelfond–Leontiev operators of generalized differentiation,” in Complex analysis, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz. (VINITI, Moscow, 2018), Vol. 153, pp. 29–54.

    MathSciNet  Google Scholar 

  4. M. Trybula, “Hadamard multipliers on spaces of holomorphic functions,” Integral Equations Operator Theory 88 (2), 249–268 (2015).

    Article  MathSciNet  Google Scholar 

  5. P. Domański and M. Langenbruch, “Representation of multipliers on spaces of real analytic functions,” Analysis (Munich) 32 (2), 137–162 (2012).

    MathSciNet  MATH  Google Scholar 

  6. P. Domański and M. Langenbruch, “Algebra of multipliers on the space of real analytic functions of one variable,” Studia Math. 212, 155–171 (2012).

    Article  MathSciNet  Google Scholar 

  7. P. Domański and M. Langenbruch, “Hadamard multipliers on spaces of real analytic functions,” Adv. Math. 240, 575–612 (2013).

    Article  MathSciNet  Google Scholar 

  8. P. Domański and M. Langenbruch, “Hadamard-type operators on spaces of real analytic functions in several variables,” J. Funct. Anal. 269, 3868–3913 (2015).

    Article  MathSciNet  Google Scholar 

  9. P. Domański, M. Langenbruch, and D. Vogt, “Multiplier projections on spaces of real analytic functions in several variables,” Complex Var. Elliptic Equ. 62 (2), 241–268 (2017).

    Article  MathSciNet  Google Scholar 

  10. D. Vogt, “Hadamard-type operators on spaces of smooth functions,” Math. Nachr. 288, 353–361 (2015).

    Article  MathSciNet  Google Scholar 

  11. D. Vogt, “Hadamard operators on \(\mathcal D'(\mathbb R^N)\),” Studia Math. 237, 137–152 (2017).

    Article  MathSciNet  Google Scholar 

  12. D. Vogt, “Hadamard operators on \(\mathcal D'(\Omega)\),” Math. Nachr. 290, 1374–1380 (2017).

    Article  MathSciNet  Google Scholar 

  13. D. Vogt, “\(\mathcal E'\) as an algebra by multiplicative convolution,” Funct. Approx. Comment. Math. 59 (1), 117–128 (2018).

    Article  MathSciNet  Google Scholar 

  14. D. Vogt, Hadamard Type Operators on Temperate Distributions, arXiv: 1812.06299 (2018).

  15. P. Domański and M. Langenbruch, “Surjectivity of Hadamard-type operators on spaces of smooth functions,” Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2), 1625–1676 (2019).

    Article  MathSciNet  Google Scholar 

  16. B. I. Golubov, “Boundedness of the Hardy and the Hardy–Littlewood operators in the spaces \(\operatorname {Re}H^1\) and \(\mathrm {BMO}\),” Sb. Math. 188 (7), 1041–1054 (1997).

    Article  MathSciNet  Google Scholar 

  17. S. Stević, “Compactness of the Hardy–Littlewood operator on some spaces of harmonic functions,” Siberian Math. J. 50 (1), 167–180 (2009).

    Article  MathSciNet  Google Scholar 

  18. S. S. Volosivets, “Modified Hardy and Hardy–Littlewood operators and their behaviour in various spaces,” Izv. Math. 75 (1), 29–51 (2011).

    Article  MathSciNet  Google Scholar 

  19. G. Gao and Y. Zhong, “Some estimates of Hardy operators and their commutators on Morrey-Herz spaces,” J. Math. Inequal. 11, 49–58 (2017).

    Article  MathSciNet  Google Scholar 

  20. S. S. Volosivets and B. I. Golubov, “Modified Hardy and Hardy–Littlewood fractional operators in Morrey–Herz spaces and their commutators in weighted spaces”, in Proceedings of the Voronezh Winter Mathematical School ”Modern Methods of Function Theory and Related Problems,” Part 2, January 28–February 2, 2019, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. (VINITI, Moscow, 2019), Vol. 171, pp. 70–77 [in Russian].

    MathSciNet  Google Scholar 

  21. S. S. Volosivets and B. I. Golubov, “Fractional modified Hardy and Hardy–Littlewood operators and their commutators,” Russian Math. (Iz. VUZ) 63 (9), 12–21 (2019).

    Article  MathSciNet  Google Scholar 

  22. H. H. Schaefer, Topological Vector Spaces (Macmillan, New York, 1966).

    MATH  Google Scholar 

  23. B. V. Shabat, Introduction to Complex Analysis (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  24. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1968), Vol. 1.

    MATH  Google Scholar 

  25. R. E. Edwards, Functional Analysis. Theory and Applications (Holt Rinehart and Winston, New York, 1965).

    MATH  Google Scholar 

  26. V. V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet–Schwartz and dual Fréchet–Schwartz spaces,” Russian Math. Surveys 34 (4), 105–143 (1979).

    Article  Google Scholar 

  27. L. Hörmander, An Introduction to Complex Analysis in Several Variables (van Nostrand, Princeton, 1966).

    MATH  Google Scholar 

  28. A. P. Robertson and W. J. Robertson, Topological Vector Spaces (Cambridge, Cambridge University Press, 1964).

    MATH  Google Scholar 

  29. A. A. Gol’dberg, “Elementary remarks on the formulas defining order and type of functions of several variables,” Dokl. Akad. Nauk Arm. SSR 29, 145–151 (1959).

    MathSciNet  Google Scholar 

  30. L. I. Ronkin, Introduction to Entire Functions of Several Variables (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  31. A. V. Abanin and Yu. F. Korobeinik, “Diagonal operators in spaces of number families. Applications to Dirichlet series,” in Topical Problems of Mathematical Analysis (Izd. Rostov. Gos. Univ., Rostov-on-Don, 1978), pp. 8–17 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ivanova.

Additional information

Translated from Matematicheskie Zametki, 2021, Vol. 110, pp. 52-64 https://doi.org/10.4213/mzm12879.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, O.A., Melikhov, S.N. Operators of Almost Hadamard Type and Hardy–Littlewood Operator in the Space of Entire Functions of Several Complex Variables. Math Notes 110, 61–71 (2021). https://doi.org/10.1134/S0001434621070063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621070063

Keywords

Navigation