Skip to main content
Log in

Computer simulation of the binding of quinocarcin to DNA. Prediction of mode of action and absolute configuration

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Computer-based models were derived for the covalent and noncovalent binding of the antitumor antibiotic quinocarcin to a representative DNA segment, d(ATGCAT)2. They showed that a mode of action, involving opening of the oxazolidine ring to give an iminium ion, followed by initial noncovalent binding in the minor groove and subsequent alkylation of the 2-amino group of guanine, was rational and attended by favorable interaction energies in each step. The best model had the aryl ring of quinocarcin lying in the 3′ direction from the covalent binding site and anR configuration at the carbon involved in covalent bond formation. It also showed that the preferred absolute configuration for quinocarcin was the reverse of that arbitrarily assigned in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomita, F., Takahashi, K. and Shimizu, K., J. Antibiot., 35 (1983) 463–467.

    Google Scholar 

  2. Takahashi, K. and Tomita, F., J. Antibiot., 35 (1983) 468–470.

    Google Scholar 

  3. Hirayama, N. and Shirahata, K., J. Chem. Soc, Perkin Trans. 2(1983) 1705–1708.

    Google Scholar 

  4. Tomita, F., Takahashi, K. and Tamaoki, T., J. Antibiot., 37 (1984) 1268–1272.

    PubMed  Google Scholar 

  5. Ishigoro, K., Takashashi, K., Yazawa, K., Sakiyama, S. and Arai, T., J. Biol. Chem., 256 (1981) 2162–2167.

    PubMed  Google Scholar 

  6. Lown, I.W., Joshua, A.V. and Lee, J.S., Biochemistry 21 (1982) 419–428.

    PubMed  Google Scholar 

  7. Zmijewski, Jr., M.J., Miller-Hatch, K. and Mikolajczak, M., Chem.-Biol. Interact., 52 (1985) 361–375.

    PubMed  Google Scholar 

  8. Hurley, L.H., J. Antibiot., 30 (1977) 349–369.

    PubMed  Google Scholar 

  9. Thurston, D.E. and Hurley, L.H., Drugs of the Future 8 (1983) 957–971.

    Google Scholar 

  10. Kishi, K., Yazawa, K., Takahashi, K., Mikami, Y. and Arai, T., J. antibiot., 37 (1984) 847–852.

    PubMed  Google Scholar 

  11. Reynolds, V.L., Molineaux, I.J., Kaplan, D.J., Swenson, D.H. and Hurley, L.H., Biochemistry, 24 (1985) 6228–6237.

    PubMed  Google Scholar 

  12. Weiner, P.K. and Kollman, P.A., J. Comput. Chem., 2 (1984) 287–303.

    Google Scholar 

  13. Weiner, S.J., Kollman, P.A., Case, D., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P.K., J. Am. Chem. Soc, 106 (1984) 765–784.

    Google Scholar 

  14. Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc, 99 (1977) 4899–4907.

    Google Scholar 

  15. Clark, T., A Handbook of Computational Chemistry, Wiley, New York, NY, 1985.

    Google Scholar 

  16. Lown, J.W., Joshua, A.V. and Chen, H.-H., Can. J. Chem., 59 (1981) 2945–2952.

    Google Scholar 

  17. Langridge, R. and Ferrin, T.E., J. Mol. Graph, 2 (1984) 55–56.

    Google Scholar 

  18. Arnott, S., Campbell-Smith, P. and Chandrasekaron, R., In Fasman, G.D. (Ed.) CRC Handbook of Biochemistry, Vol. 2, CRC, Cleveland, OH, 1976 pp. 411–422.

    Google Scholar 

  19. Graves, D.E., Pattaroni, C., Krishnan, B.S., Ostrander, J.M., Hurley, L.H. and Krugh, T.R., J. Biol. Chem., 259 (1984) 8202–8209.

    PubMed  Google Scholar 

  20. Cheatham, S., Kook, A., Hurley, L.H., Barkley, M. and Remers, W., J. Med. Chem., in press.

  21. Remers, W.A., Mabilia, M. and Hopfinger, A.J., J. Med. Chem. 29 (1986) 2492–2503.

    PubMed  Google Scholar 

  22. Evans, D.A., Illig, C.R. and Saddler, J.C., J. Am. Chem. Soc., 108 (1986) 2478–2479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, G.C., Wunz, T.P. & Remers, W.A. Computer simulation of the binding of quinocarcin to DNA. Prediction of mode of action and absolute configuration. J Computer-Aided Mol Des 2, 91–106 (1988). https://doi.org/10.1007/BF01532085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01532085

Key words

Navigation