Skip to main content
Log in

Sequence specificity in DNA–drug intercalation: MD simulation and density functional theory approaches

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

DNA is an essential target for the treatment of various pathologies, especially cancer. Hence targeting DNA double helix for alteration of its function has been attempted by several ways. Drug–DNA intercalation, one such biophysical process, could not be studied extensively as this requires significant deformation of the receptor DNA. Here we report thorough theoretical investigation of intercalation process in daunomycin–DNA interaction, by performing molecular dynamics simulations of the drug–DNA complexes for various DNA sequences, followed by Free-energy analysis and density functional theory (DFT) based studies to understand the binding preference. The classical energy based analyses indicate that the drug prefers to bind to TC/GA sequence over others. The DFT based energies of supra-molecular complexes are always contaminated with basis set superposition error (BSSE), which can be corrected by counterpoise method. This method is quite effective for systems containing two molecular fragments but is not appropriate for studying interaction between two base pair fragments and the drug intercalated between them. We have adopted an extension of the counterpoise method for BSSE corrected interaction energy calculation. These interaction energies, along with the energy penalty due to un-stacking of the base pairs, also indicate TC/GA sequence is the most preferred sequence for binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gewirtz DA (1999) Biochem Pharmacol 57:727–741

    CAS  PubMed  Google Scholar 

  2. Ghosh D, Hossain M, Saha C, Dey SK, Kumar GS (2012) DNA Cell Biol 31:378–387

    CAS  PubMed  Google Scholar 

  3. Da Ros T, Spalluto G, Prato M, Saison-Behmoaras T, Boutorine A, Cacciari B (2005) Curr Med Chem 12:71–88

    PubMed  Google Scholar 

  4. Pabo CO, Sauer RT (1984) Annu Rev Biochem 53:293–321

    CAS  PubMed  Google Scholar 

  5. Gilad Y, Senderowitz H (2014) J Chem Inf Model 54:96–107

    CAS  PubMed  Google Scholar 

  6. Chaires JB (1998) Curr Opin Struct Biol 8:314–320

    CAS  PubMed  Google Scholar 

  7. Ihmels LTH (2011) Intercalation of organic ligands as a tool to modify the properties of DNA. In: Jin J-I, Grote J (eds) Materials science of DNA. CRC Press, Boca Raton

    Google Scholar 

  8. Halder S, Bhattacharyya D (2013) Prog Biophys Mol Biol 113:264–283

    CAS  PubMed  Google Scholar 

  9. Chaires JB, Fox KR, Herrera JE, Britt M, Waring MJ (1987) Biochemistry 26:8227–8236

    CAS  PubMed  Google Scholar 

  10. Chaires JB, Herrera JE, Waring MJ (1990) Biochemistry-Us 29:6145–6153

    CAS  Google Scholar 

  11. Chen KX, Gresh N, Pullman B (1985) J Biomol Struct Dyn 3:445–466

    CAS  PubMed  Google Scholar 

  12. Hurley LH (2002) Nat Rev Cancer 2:188–200

    CAS  PubMed  Google Scholar 

  13. Todd AK, Adams A, Thorpe JH, Denny WA, Wakelin LPG, Cardin CJ (1999) J Med Chem 42:536–540

    CAS  PubMed  Google Scholar 

  14. Yeh HJC, Sayer JM, Liu XH, Altieri AS, Byrd RA, Lakshman MK, Yagi H, Schurter EJ, Gorenstein DG, Jerina DM (1995) Biochemistry 34:13570–13581

    CAS  PubMed  Google Scholar 

  15. Boer DR, Canals A, Coll M (2009) Dalton Trans 3:399–414

    Google Scholar 

  16. Mukherjee A (2011) J Phys Chem Lett 2:3021–3026

    CAS  Google Scholar 

  17. Mukherjee A, Lavery R, Bagchi B, Hynes JT (2008) J Am Chem Soc 130:9747–9755

    CAS  PubMed  Google Scholar 

  18. Wilhelm M, Mukherjee A, Bouvier B, Zakrzewska K, Hynes JT, Lavery R (2012) J Am Chem Soc 134:8588–8596

    CAS  PubMed  Google Scholar 

  19. Baginski M, Fogolari F, Briggs JM (1997) J Mol Biol 274:253–267

    CAS  PubMed  Google Scholar 

  20. Rehn C, Pindur U (1996) Monatsh Chem 127:631–644

    CAS  Google Scholar 

  21. Bailly C, Echepare S, Gago F, Waring MJ (1999) Anti-Cancer Drug Des 14:291–303

    CAS  Google Scholar 

  22. Chen KX, Gresh N, Pullman B (1986) Mol Pharmacol 30:279–286

    CAS  PubMed  Google Scholar 

  23. Medhi C, Mitchell JBO, Price SL, Tabor AB (1999) Biopolymers 52:84–93

    CAS  PubMed  Google Scholar 

  24. Hannon MJ (2007) Chem Soc Rev 36:280–295

    CAS  PubMed  Google Scholar 

  25. Wheate NJ, Brodie CR, Collins JG, Kemp S, Aldrich-Wright JR (2007) Mini Rev Med Chem 7:627–648

    CAS  PubMed  Google Scholar 

  26. Mondal M, Mukherjee S, Bhattacharyya D (2014) J Mol Model 20:2499

    PubMed  Google Scholar 

  27. Bell CE, Lewis M (2000) Nat Struct Biol 7:209–214

    CAS  PubMed  Google Scholar 

  28. Romanuka J, Folkers GE, Biris N, Tishchenko E, Wienk H, Bonvin AM, Kaptein R, Boelens R (2009) J Mol Biol 390:478–489

    CAS  PubMed  Google Scholar 

  29. Werner MH, Gronenborn AM, Clore GM (1996) Science 271:778–784

    CAS  PubMed  Google Scholar 

  30. Firczuk M, Wojciechowski M, Czapinska H, Bochtler M (2011) Nucleic Acids Res 39:744–754

    CAS  PubMed  Google Scholar 

  31. Sandmann A, Sticht H (2018) PLoS ONE 13:e0192605

    PubMed  PubMed Central  Google Scholar 

  32. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670–6688

    CAS  PubMed  Google Scholar 

  33. Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theory Comput 4:1996–2000

    CAS  PubMed  Google Scholar 

  34. Zhao Y, Truhlar DG (2008) Accounts Chem Res 41:157–167

    CAS  Google Scholar 

  35. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    CAS  PubMed  Google Scholar 

  36. Arago J, Sancho-Garcia JC, Orti E, Beljonne D (2011) J Chem Theory Comput 7:2068–2077

    CAS  PubMed  Google Scholar 

  37. Dunning TH (1989) J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  38. Peterson KA, Kendall RA, Dunning TH (1993) J Chem Phys 99:1930–1944

    CAS  Google Scholar 

  39. Morgado C, Vincent MA, Hillier IH, Shan X (2007) Phys Chem Chem Phys 9:448–451

    CAS  PubMed  Google Scholar 

  40. Reha D, Kabelac M, Ryjacek F, Sponer J, Sponer JE, Elstner M, Suhai S, Hobza P (2002) J Am Chem Soc 124:3366–3376

    CAS  PubMed  Google Scholar 

  41. Morokuma K (1971) J Chem Phys 55:1236–2000

    CAS  Google Scholar 

  42. Boys SF, Bernardi F (2002) Mol Phys 100:65–73

    Google Scholar 

  43. Richard RM, Bakr BW, Sherrill CD (2018) J Chem Theory Comput 14:2386–2400

    CAS  PubMed  Google Scholar 

  44. Phipps MJS, Fox T, Tautermann CS, Skylaris CK (2015) Chem Soc Rev 44:3177–3211

    CAS  PubMed  Google Scholar 

  45. Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista FA, Fermann JT, Mintz BJ, Burns LA, Wilke JJ, Abrams ML, Russ NJ, Leininger ML, Janssen CL, Seidl ET, Allen WD, Schaefer HF, King RA, Valeev EF, Sherrill CD, Crawford TD (2012) WIREs Comput Mol Sci 2:556–565

    CAS  Google Scholar 

  46. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang AHJ, Ughetto G, Quigley GJ, Rich A (1987) Biochemistry 26:1152–1163

    CAS  PubMed  Google Scholar 

  48. Bhattacharyya D, Halder S, Basu S, Mukherjee D, Kumar P, Bansal M (2017) J Comput Aid Mol Des 31:219–235

    CAS  Google Scholar 

  49. Chandrasekaran R, Arnott S (1996) J Biomol Struct Dyn 13:1015–1027

    CAS  PubMed  Google Scholar 

  50. Bansal M, Bhattacharyya D, Ravi B (1995) Comput Appl Biosci 11:281–287

    CAS  PubMed  Google Scholar 

  51. Pingali PK, Halder S, Mukherjee D, Basu S, Banerjee R, Choudhury D, Bhattacharyya D (2014) J Comput Aid Mol Des 28:851–867

    CAS  Google Scholar 

  52. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  53. DeLano WL (2002) CCP4 Newslett Protein Crystallogr 40:82–92

    Google Scholar 

  54. Galindo-Murillo R, Robertson JC, Zgarbova M, Sponer J, Otyepka M, Jurecka P, Cheatham TE (2016) J Chem Theory Comput 12:4114–4127

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431–439

    CAS  Google Scholar 

  56. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  57. Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 09, Revision B.01. Gaussian Inc, Pittsburgh

    Google Scholar 

  58. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) J Am Chem Soc 115:9620–9631

    CAS  Google Scholar 

  59. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    CAS  PubMed  Google Scholar 

  60. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26:1668–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mobley DL, Chodera JD, Dill KA (2006) J Chem Phys 125:084902

    PubMed  Google Scholar 

  62. Mark P, Nilsson L (2001) J Phys Chem A 105:9954–9960

    CAS  Google Scholar 

  63. Press WHT, Vetterling SA, Flannery BP (1993) Numeric recipes: the art of scientific computing, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  64. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463–1472

    CAS  Google Scholar 

  65. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    CAS  Google Scholar 

  66. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  67. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    CAS  Google Scholar 

  68. Mukherjee S, Bansal M, Bhattacharyya D (2006) J Comput Aid Mol Des 20:629–645

    CAS  Google Scholar 

  69. Barone G, Guerra CF, Bickelhaupt FM (2013) Chemistryopen 2:186–193

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mukherjee S, Kailasam S, Bansal M, Bhattacharyya D (2014) Biopolymers 101:107–120

    CAS  PubMed  Google Scholar 

  71. Svozil D, Hobza P, Sponer J (2010) J Phys Chem B 114:2547–2547

    CAS  Google Scholar 

  72. Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Haseg J, Fox DJ (2010) Guassian 09, revision A02. Gaussian Inc., Wallingford

    Google Scholar 

  73. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    CAS  Google Scholar 

  74. Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) J Chem Theory Comput 8:3314–3321

    CAS  PubMed  Google Scholar 

  75. https://Pubchem.ncbi.nlm.nih.gov/Compound/30323#Section=Top

  76. Samanta S, Mukherjee S, Chakrabarti J, Bhattacharyya D (2009) J Chem Phys 130:03B614

    Google Scholar 

  77. Calladine CR (1982) J Mol Biol 161:343–352

    CAS  PubMed  Google Scholar 

  78. Duarte CM, Pyle AM (1998) J Mol Biol 284:1465–1478

    CAS  PubMed  Google Scholar 

  79. Brown TN, Mora-Diez N (2006) J Phys Chem B 110:9270–9279

    CAS  PubMed  Google Scholar 

  80. East ALL, Smith BJ, Radom L (1997) J Am Chem Soc 119:9014–9020

    CAS  Google Scholar 

  81. Halder A, Halder S, Bhattacharyya D, Mitra A (2014) Phys Chem Chem Phys 16:18383–18396

    CAS  PubMed  Google Scholar 

  82. Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) J Phys Chem A 107:9380–9386

    CAS  PubMed  Google Scholar 

  83. Munegumi T (2013) World J Chem Educ 1:12–16

    Google Scholar 

  84. Serjeant AAP (1984) The determination of ionization constant. Chapman and Hall, London

    Google Scholar 

  85. Li L, Li CA, Sarkar S, Zhang J, Witham S, Zhang Z, Wang L, Smith N, Petukh M, Alexov E (2012) BMC Biophys 5:9

    PubMed  PubMed Central  Google Scholar 

  86. Morgado CA, Svozil D, Turner DH, Sponer J (2012) Phys Chem Chem Phys 14:12580–12591

    CAS  PubMed  Google Scholar 

  87. Basham B, Schroth GP, Ho PS (1995) Proc Natl Acad Sci USA 92:6464–6468

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chakrabarti S, Bhattacharyya D, Dasgupta D (2000) Biopolymers 56:85–95

    CAS  PubMed  Google Scholar 

  89. Beveridge DL, Barreiro G, Byun KS, Case DA, Cheatham TE, Dixit SB, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Seibert E, Sklenar H, Stoll G, Thayer KM, Varnai P, Young MA (2004) Biophys J 87:3799–3813

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Ashoke Prasun Chattopadhyay for useful discussions. L.M thanks SERB-DST, Govt. of India for providing financial assistant under NPDF project SERB/F/85I2/20I7-20I8. Authors thank DAE, Govt. of India, under CAPP-II project and BRAF facility of CDAC, Pune, India for computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maganti, L., Bhattacharyya, D. Sequence specificity in DNA–drug intercalation: MD simulation and density functional theory approaches. J Comput Aided Mol Des 34, 83–95 (2020). https://doi.org/10.1007/s10822-019-00268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00268-y

Keywords

Navigation