Skip to main content
Log in

Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Diamond films were deposited in an atmospheric-pressure radio frequency plasma reactor. Hydrogen and methane were injected coaxially into the plasma as a high-velocity jet which impinged on the molybdenum substrate. In some cases argon was added to the reactant jet to increase its momentum, thereby reducing the boundary layer thickness. In most cases argon addition substantially, improved diamond growth. A numerical model was developed, which calculated two-dimensional reactor temperature and velocity, distributions, and the chemical kinetics in the boundary layer. The calculations indicate that under the experimental conditions argon addition reduced the thickness of the hydrogen nonequilibrium boundary layer from 3.5 to 1.0 mm. In addition, the calculations suggest that monatomic carbon may be a key diamond growth species under thermal plasma conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schlichting,Boundary-Laver Theory, 7th edn., McGraw-Hill, New York (1979).

    Google Scholar 

  2. K. Suzuki, A. Sawabe, H. Yasuda, and T. Inuzuka,Appl. Phvs. Lett. 50, 728 (1987).

    Google Scholar 

  3. K. Kurihara, K. Sasaki, M. Kawarada, and N. Koshino,Appl. Phvs. Lett. 52, 437 (1988).

    Google Scholar 

  4. K. R. Stalder and R. L. Sharpless,J. Appl. Phys. 68, 6187 (1990).

    Google Scholar 

  5. N. Ohtake and M. Yoshikawa,J. Electrochem. Soc. 137, 717 (1990).

    Google Scholar 

  6. Z. P. Lu, L. Stachowicz, P. Kong, J. Heberlein, and E. Pfender,Plasma Chem. Plasma Process. 11, 387 (1991).

    Google Scholar 

  7. S. Matsumoto, M. Hino, and T. Konayashi,Appl. Phys. Lett. 51, 737 (1987).

    Google Scholar 

  8. M. A. Capelli, T. G. Owano, and C. H. Kruger,J. Mater. Res. 5, 2326 (1990).

    Google Scholar 

  9. C. Li, Y. C. Lau, and S. L. Girshick,Proceedings of the Second International Symposium on Diamond Materials (Electrochemical Society Proceedings, Vol. 91-8), p. 57 (1991).

  10. C. Li, B. W. Yu, and S. L. Girshick, Proceedings, 10th International Symposium on Plasma Chemistry, Bochum, Germany, August 1991, Vol. 3, paper 3.1–9.

  11. R. Hernberg, T. Mäntylä, T. Stenberg, and J. Vattulainen, Proceedings, 10th International Symposium on Plasma Chemistry, Bochum, Germany, August 1991, Vol. 3, paper 3.1-3.

  12. Z. P. Lu, J. Heberlein, and E. Pfender,Plasma Chem. Plasma Process. 12, 55 (1992).

    Google Scholar 

  13. J. Mostaghimi and M. Boulos,Plasma Chem. Plasma Process. 9, 25 (1989).

    Google Scholar 

  14. B. W. Yu and S. L. Girshick,J. Appl. Phys. 69, 656 (1991).

    Google Scholar 

  15. D. G. Goodwin and G. G. Gavillet,J. Appl. Phys. 68, 6393 (1990).

    Google Scholar 

  16. D. G. Goodwin,Appl. Phys. Lett. 59, 277 (1991).

    Google Scholar 

  17. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, Sandia National Laboratories Report SAND86-8246 (1986).

  18. J. Warnatz,Ber. Bunsenges. Phys. Chem. 82, 193 (1982).

    Google Scholar 

  19. P. Glarborg, J. A. Miller, and R. J. Kee,Combust. Flame 65, 177 (1986).

    Google Scholar 

  20. S. J. Harris, A. M. Weiner, and R. J. Blint,Combust. Flame 72, 91 (1988).

    Google Scholar 

  21. J. A. Miller and C. T. Bowman,Prog. Energy Combust. Sci. 15, 287 (1989).

    Google Scholar 

  22. S. J. Harris,J. Appl. Phys. 65, 3044 (1989).

    Google Scholar 

  23. M. Frenklach and H. Wang,Phys. Rev. B 43, 1520 (1991).

    Google Scholar 

  24. T. G. Owano, Ph.D. dissertation, Stanford University (1991).

  25. A. J. Dean, D. F. Davidson, and R. K. Hanson,J. Phys. Chem. 95, 183 (1991).

    Google Scholar 

  26. NIST Standard Reference Database 17: Chemical Kinetics, Vol. 4.0. U.S. Department of Commerce, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, Maryland (1992).

  27. G. A. Raiche, G. P. Smith, and J. B. Jeffries,New Diamond Science and Technology, R. Messier, J. T. Glass, J. E. Butler, and R. Roy, eds., Materials Research Society, Pittsburgh (1991), p. 251.

    Google Scholar 

  28. T. G. Owano, D. G. Goodwin, C. H. Kruger, and M. A. Capelli, Proceedings, 10th International Symposium on Plasma Chemistry, Bochum, Germany, August 1991, Vol. 3, paper 3.1–8.

  29. D. Huang and M. Frenklach,J. Phys. Chem. 96, 1868 (1992).

    Google Scholar 

  30. J. E. Butler and R. L. Woodin,Philos. Trans. Royal Soc. London, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girshick, S.L., Li, C., Yu, B.W. et al. Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition. Plasma Chem Plasma Process 13, 169–187 (1993). https://doi.org/10.1007/BF01466040

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01466040

Key words

Navigation