Skip to main content
Log in

Hybrid electron cyclotron resonance-radio-frequency plasma etching of III–V semiconductors in Cl2-based discharges. Part I: GaAs and related compounds

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A systematic study has been performed of the dry etching characteristics of GaAs, Al0.3Ga0.7As, and GaSb in chlorine-based electron cyclotron resonance (ECR) discharges. The gas mixtures investigated were CCl2F2/O2, CHCl2F/O2, and PCl3. The etching rates of all three materials increase rapidly with applied RF power, while the addition of the microwave power at moderate levels (150 W) increases the etch rates by 20–80%. In the microwave discharges, the etch rates decrease with increasing pressure, but at 1 m Torr it is possible to obtain usable rates for self-bias voltages ≤ 100 V. Of the Freon-based mixtures, CHCl2F provides the least degradation of optical (photoluminescence) and electrical (diode ideality factors and Schottky barrier heights) properties of GaAs as a result of dry etching. Smooth surface morphologies are obtained on all three materials provided the microwave power is limited to ≤ 200 W. Above this power, there is surface roughening evident with all of the gas mixtures investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Pang,J. Electrochem. Soc. 133, 784 (1986).

    Google Scholar 

  2. R. Cheung, Y. H. Lee, T. P. Smith, III, D. P. Kern, S. P. Beamont, and C. D. W. Wilkinson,J. Vac. Sci. Technol. 137, 1462 (1989).

    Google Scholar 

  3. H. F. Wong, D. L. Green, T. Y. Liu, D. G. Lishan, M. Bellis, E. L. Hu, P. M. Petroff, P. O. Holtz, and J. L. Merz,J. Vac. Sci. Technol. B6, 1906 (1988).

    Google Scholar 

  4. C. M. Knoedler, L. Osterling, and M. Heiblum,J. Appl. Phys. 65, 1800 (1989).

    Google Scholar 

  5. D. J. As, T. Frey, W. Jantz, G. Kaufel, K. Kohler, W. Rothermund, T. Schwizer, and H. P. Zappe,J. Electron. Mater. 19, 747 (1990).

    Google Scholar 

  6. S. K. Noh, K. Ishibashi, Y. Aoyagi, S. Nambar, and Y. Yoshizako,J. Appl. Phys. 67, 2591 (1990).

    Google Scholar 

  7. M. W. Geis, G. A. Lincoln, N. Efremow, and W. J. Piacentini,J. Vac. Sci. Technol. 19, 1390 (1981).

    Google Scholar 

  8. S. J. Pearton, U. K. Chakrabarti, and W. S. Hobson,J. Appl. Phys. 66, 2061 (1989).

    Google Scholar 

  9. C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella,J. Vac. Sci. Technol. B8, 596 (1990).

    Google Scholar 

  10. S. J. Pearton, U. K. Chakrabarti, A. P. Perley, D. Johnson, and C. Constantine,Appl. Phys. Lett. 56, 1424 (1990).

    Google Scholar 

  11. J. Asmussen,J. Vac. Sci. Technol. A7, 883 (1989).

    Google Scholar 

  12. Y. Arnal, J. Pelletier, C. Pomet, B. Petit, and A. Durandet,Appl. Phys. Lett. 45, 132 (1984).

    Google Scholar 

  13. Y. H. Lee, J. E. Heidenreich, and G. Fortuno,J. Vac. Sci. Technol. A7, 903 (1989).

    Google Scholar 

  14. K. Asakawa and S. Sugata,J. Vac. Sci. Technol. A4, 677 (1986).

    Google Scholar 

  15. E. L. Hu and R. E. Howard,Appl. Phys. Lett. 37, 1022 (1980).

    Google Scholar 

  16. A. Seabaugh,J. Vac. Sci. Technol. B6, 77 (1988).

    Google Scholar 

  17. R. E. Klinger and J. E. Greene,Appl. Phys. Lett. 38, 620 (1981).

    Google Scholar 

  18. M. F. Stein and P. F. Liao,J. Vac. Sci. Technol. B1, 1053 (1983).

    Google Scholar 

  19. S. Semura, H. Saitoh, and K. Asahawa,J Appl Phys. 55, 3131 (1984).

    Google Scholar 

  20. D. L. Flamm, V. M. Donnelly, and D. E. Ibbottson,VLSI Electronics: Microstructure Science, N. G. Einspruch, ed., Academic Press, New York (1984).

    Google Scholar 

  21. S. C. McNevin,J. Vac. Sci. Technol. B4, 1216 (1986).

    Google Scholar 

  22. A. Scherer and H. G. Craighead,Appl. Phys. Lett. 49, 1284 (1986).

    Google Scholar 

  23. S. Salimian and C. B. Cooper,J. Electrochem. Soc. 136, 2420 (1989).

    Google Scholar 

  24. R. A. Gottscho, G. Smolinsky, and R. H. Burton,J. Appl. Phys. 53, 5908 (1982).

    Google Scholar 

  25. S. J. Pearton, M. J. Vasile, K. S. Jones, K. T. Short, E. Lave, T. R. Fullowan, A. E. Von Neida, and N. M. Haegel,J. Appl. Phys. 65, 1281 (1989).

    Google Scholar 

  26. S. M. Sze,Physics of Semiconductor Devices, Academic Press, New York (1981).

    Google Scholar 

  27. S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, and A. P. Kinsella,J. Vac. Sci. Technol. B8, 607 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearton, S.J., Chakrabarti, U.K., Katz, A. et al. Hybrid electron cyclotron resonance-radio-frequency plasma etching of III–V semiconductors in Cl2-based discharges. Part I: GaAs and related compounds. Plasma Chem Plasma Process 11, 405–422 (1991). https://doi.org/10.1007/BF01447156

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447156

Key words

Navigation