Skip to main content
Log in

Heterogeneity of the vacuolar pyrophosphatase protein fromChenopodium rubrum

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Activities of the tonoplast ATPase (V-ATPase EC 3.6.1.3) and PPase (V-PPase EC 3.6.1.1) provide the proton gradient driving the accumulation of various metabolites, organic and inorganic ions in the plant vacuole. We used anion exchange chromatography, liquid-phase isoelectric focusing (IEF), and continuous-elution native polyacrylamide gel electrophoresis (preparative PAGE) to enrich the V-PPase from solubilized tonoplast proteins from suspension cultured cells ofChenopodium rubrum L.The fractions were identified by their enzymatic activity, sensitivity towards the specific PPase inhibitor aminomethylenediphosphonate, apparent molecular weight, and immunological reactivity with an antibody raised against mung bean V-PPase. All these different methods used for the separation of solubilized tonoplast proteins revealed the existence of two physically separable V-PPase proteins exhibiting substrate specific enzymatic activity and 66 kDa apparent molecular weight after sodium dodecyl sulfate(SDS)-PAGE. The isoelectric points of the active V-PPase forms were 5.05 and 5.48 (V-ATPase 6.1). On the basis of the observation of high recoveries of enzymatic activity after different preparations we suggest that the V-PPase proteins separated may represent physiologically occurring forms of the enzyme which cannot be distinguished by SDS-PAGE and Western blot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames BN (1962) Assays of inorganic phosphates, total phosphate and phosphatases. Methods Enzymol 8: 115–118

    Article  Google Scholar 

  • Baykov AA, Dubnova EB, Bakuleva NP, Evtushenko OA, Zhen R-G, Rea PA (1993) Differential sensitivity of membrane associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett 327: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Bentrup F-W, Gogarten-Boekels M, Hoffmann B, Gogarten JP, Baumann C (1986) ATP-dependent acidification and tonoplast hyperpolarisation in isolated vacuoles from green suspension cells ofChenopodium rubrum L. Proc Natl Acad Sci USA 83: 2431–2433

    Article  PubMed  CAS  Google Scholar 

  • Berlin J, Sieg S, Bokern M, Harms H (1986) Production of betalains by suspension cultures ofChenopodium rubrum L. Plant Cell Tissue Organ Cult 5: 163–174

    Article  CAS  Google Scholar 

  • Bille J, Weiser T, Bentrup F-W (1992) The lysolipid sphingosine modulates pyrophosphatase activity in tonoplast vesicles and isolated vacuoles from a heterotrophic cell suspension culture ofChenopodium rubrum. Physiol Plant 84: 250–254

    Article  CAS  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85: 7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Britten CJ, Turner JC, Rea PA (1989) Identification and purification of substrate-binding subunit of higher plant H+-translocating inorganic pyrophosphatase. FEBS Lett 256: 200–206

    Article  CAS  Google Scholar 

  • Chanson A (1990) Use of pyrophosphatase activity as a reliable tonoplast marker in maize roots. Plant Sci 71: 199–207

    Article  CAS  Google Scholar 

  • —, Fichman J, Spear D, Taiz L (1985) Pyrophosphate-driven proton transport by microsomal membranes of corn coleoptiles. Plant Physiol 79: 159–164

    PubMed  CAS  Google Scholar 

  • Colombo R, Cerana R (1993) Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells ofDaucus carota. J Plant Physiol 142: 226–229

    CAS  Google Scholar 

  • Cooperman BS, Baykov AA, Lahti R (1992) Evolutionary conservation o f the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci 17: 262–266

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Kaiser G, Martinoia E (1988) Characterization of vacuolar polypeptides of barley mesophyll cells by two-dimensional gel electrophoresis and by their affinity to lectins. Planta 176: 363–367

    Article  Google Scholar 

  • Harms H, Dehnen W, Mönch W (1977) Benzopyrene metabolites formed by plant cells. Z Naturforsch 32c: 321–326

    CAS  Google Scholar 

  • Haschke H-P (1989) Purification of plant membranes and membrane proteins by preparative isoelectric focusing. In: Radola BJ (ed) Electrophoresis forum 89: proceedings of the international meeting on electrophoresis, Technical University Munich, October 23–25, 1989, Munich, Germany

  • Hoffmann B, Bentrup F-W (1989) Two proton pumps operate in parallel across the tonoplast of vacuoles isolated from suspension cells ofChenopodium rubrum L. Bot Acta 102: 297–301

    Google Scholar 

  • Hörtensteiner S, Martinoia E, Amrhein N (1994) Factors affecting the re-formation of vacuoles in evacuolated protoplasts and the expression of the two vacuolar proton pumps. Planta 192: 395–403

    Article  PubMed  Google Scholar 

  • Karlsson J (1975) Membrane bound potassium and magnesium stimulated inorganic pyrophosphatase from roots and cotyledons of sugar beet (Beta vulgaris L.). Biochim Biophys Acta 399: 356–363

    PubMed  CAS  Google Scholar 

  • Kim Y, Kim EJ, Rea PA (1994) Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase ofBeta vulgaris. Plant Physiol 106: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Lerchl J, König S, Zrenner R, Sonnewald U (1995) Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco. Plant Mol Biol 29: 833–840

    Article  PubMed  CAS  Google Scholar 

  • Long AR, Williams LE, Nelson SJ, Hall JL (1995) Localization of membrane pyrophosphatase activity inRicinus communis seedlings. J Plant Physiol 146: 629–638

    CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Maeshima M (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles: inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem 196: 11–17

    Article  PubMed  CAS  Google Scholar 

  • —, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264: 20068–20073

    PubMed  CAS  Google Scholar 

  • Nakanishi Y, Maeshima M (1998) Molecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol 116: 589–597

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer W (1998) Differential energization of the tonoplast in suspension cells and seedlings fromPicea abies. Trees Struct Fund 13: 112–116

    Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83: 346–356

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Poole RJ (1986) Chromatographie resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast. Plant Physiol 81: 126–129

    Article  PubMed  CAS  Google Scholar 

  • —, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44: 157–180

    CAS  Google Scholar 

  • —, Britten CJ, Sarafian V (1992) Common identity of substratebinding subunit of vacuolar H+-translocating inorganic pyrophosphatase of higher plant cells. Plant Physiol 100: 723–732

    PubMed  CAS  Google Scholar 

  • Robinson DG, Haschke H-P, Hinz G, Hoh B, Maeshima M, Marty F (1996) Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta 198: 95–103

    CAS  Google Scholar 

  • Sakakibara Y, Kobayashi H, Kasamo K (1996) Isolation and characterization of cDNAs encoding vacuolar H+-pyrophosphatase isoforms from rice (Oryza sauva L.). Plant Mol Biol 31: 1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump ofArabidopsis thaliana. Proc Natl Acad Sci USA 89: 1775–1779

    Article  PubMed  CAS  Google Scholar 

  • Sze H (1983) Proton-pumping adenosine triphosphatase in membrane vesicles of tobacco callus. Biochim Biophys Acta 732: 586–594

    Article  CAS  Google Scholar 

  • Takasu A, Nakanishi Y, Yamauchi T, Maeshima M (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. J Biochem (Tokyo) 122: 883–889

    CAS  Google Scholar 

  • Tsang V, Peralta JM, Simons RA (1983) Enzymelinked immuno-transfer blot techniques for studying the specificities of antigenes and antibodies separated by gel electrophoresis. Methods Enzymol 92: 377

    Article  PubMed  CAS  Google Scholar 

  • Walker RR, Leigh RA (1981) Characterization of a salt stimulated ATPase activity associated with vacuoles isolated from storage tissue of red beet. Planta 153: 140–149

    Article  CAS  Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138: 141–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kranewitter, W., Gehwolf, R., Nagl, M. et al. Heterogeneity of the vacuolar pyrophosphatase protein fromChenopodium rubrum . Protoplasma 209, 68–76 (1999). https://doi.org/10.1007/BF01415702

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415702

Keywords

Navigation