Skip to main content

Isolation of Vacuoles from the Leaves of the Medicinal Plant Catharanthus roseus

  • Protocol
  • First Online:
Plant Vacuolar Trafficking

Abstract

The isolation of vacuoles is an essential step to unravel the important and complex functions of this organelle in plant physiology. Here, we describe a method for the isolation of vacuoles from Catharanthus roseus leaves involving a simple procedure for the isolation of protoplasts, and the application of a controlled osmotic/thermal shock to the naked cells, leading to the release of intact vacuoles, which are subsequently purified by density gradient centrifugation. The purity of the isolated intact vacuoles is assayed by microscopy, western blotting, and measurement of vacuolar (V)-H+-ATPase hydrolytic activity. Finally, membrane functionality and integrity is evaluated by measuring the generation of a transtonoplast pH gradient by the V-H+-ATPase and the V-H+-pyrophosphatase, also producing further information on vacuole purity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuhaus JM, Martinoia E (2011) Plant vacuoles. In: eLs. John Wiley & Sons, Ltd: Chichester. https://doi.org/10.1002/9780470015902.a0001675.pub2

  2. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846. https://doi.org/10.1016/j.phytochem.2007.09.017

    Article  PubMed  CAS  Google Scholar 

  3. Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:962–963. https://doi.org/10.1038/187962a0

    Article  Google Scholar 

  4. Robert S, Zouhar J, Carter C, Raikhel N (2007) Isolation of intact vacuoles from Arabidopsis rosette leaf-derived protoplasts. Nat Protoc 2:259–262. https://doi.org/10.1038/nprot.2007.26

    Article  PubMed  CAS  Google Scholar 

  5. Leigh RA, Branton D (1976) Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiol 58:656–662. https://doi.org/10.1104/pp.58.5.656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zouhar J (2017) Isolation of vacuoles and the tonoplast. In: Taylor NL, Millar AH (eds) Isolation of plant organelles and structures. Methods and protocols, methods in molecular biology, vol 1511. Springer Science + Business Media, New York, pp 113–118. https://doi.org/10.1007/978-1-4939-6533-5_9

    Chapter  Google Scholar 

  7. Zouhar J, Rojo E (2009) Plant vacuoles: where did they come from and where are they heading? Curr Opin Plant Biol 12:677–684. https://doi.org/10.1016/j.pbi.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  8. Carqueijeiro I, Noronha H, Duarte P et al (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol 162:1486–1496. https://doi.org/10.1104/pp.113.220558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Duarte P, Ribeiro D, Carqueijeiro, Bettencourt S, Sottomayor M (2016) Protoplast transformation as a plant-transferable transient expression system. In: Fett-Netto A (ed) Biotechnology of plant secondary metabolism. Methods for field and laboratory, methods in molecular biology, vol 14. Springer protocols. Humana Press, Totowa, NJ, pp 137–148. https://doi.org/10.1007/978-1-4939-3393-8_13

    Chapter  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  11. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  Google Scholar 

  12. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203. https://doi.org/10.1016/0003-2697(81)90281-5

    Article  PubMed  CAS  Google Scholar 

  13. Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264:20068–20073

    PubMed  CAS  Google Scholar 

  14. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118. https://doi.org/10.1016/0076-6879(66)08014-5

    Article  CAS  Google Scholar 

  15. Fontes N, Silva R, Vignault C et al (2010) Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Res Notes 3:19. https://doi.org/10.1186/1756-0500-3-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bottanelli F, Gershlick DC, Denecke J (2012) Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic 13:338–354. https://doi.org/10.1111/j.1600-0854.2011.01303.x

    Article  PubMed  CAS  Google Scholar 

  17. Façanha AR, de Meis L (1998) Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495. https://doi.org/10.1104/pp.116.4.1487

    Article  Google Scholar 

  18. Vera-Estrella R, Barkla BJ, Higgins VJ et al (1994) Plant defense response to fungal pathogens: activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104:209–215. https://doi.org/10.1104/pp.104.1.209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Casadio R (1991) Measurements of transmembrane pH differences of low extents in bacterial chromatophores. A study with the fluorescent probe 9-amino, 6-chloro, 2-methoxyacridine. Eur Biophys J 19:189–201. doi.org/10.1007/BF00196345

Download references

Acknowledgments

This work was supported by (1) Fundo Europeu de Desenvolvimento Regional funds through the Operational Competitiveness Programme COMPETE and by National Funds through Fundação para a Ciência e a Tecnologia (FCT) under the projects FCOMP-01-0124-FEDER-037277 (PEst-C/SAU/LA0002/2013) and FCOMP-01-0124-FEDER-019664 (PTDC/BIA-BCM/119718/2010); (2) the FCT scholarships cosupported by FCT and POPH-QREN (European Social Fund), SFRH/BD/41907/2007 (I.C.) and SFRH/BD/74257/2010 (H.N.); (3) a Scientific Mecenate Grant from Grupo Jerónimo Martins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Sottomayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carqueijeiro, I. et al. (2018). Isolation of Vacuoles from the Leaves of the Medicinal Plant Catharanthus roseus . In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics