Skip to main content
Log in

Dilatant double shearing theory applied to granular chute flow

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Although the steady flow of a granular material down a plane inclined slope has been exhaustively examined from both theoretical and experimental points of view, there is still no general agreement concerning the basic flow properties such as density and velocity profiles. The majority of studies assume that the velocity component of the material perpendicular to the inclined plane is sufficiently small to assume that it is everywhere zero. However, recent dynamical modelling of granular chute flow indicates that this component of velocity, although small, is actually non-zero. In this paper, we examine a dilatant double shearing theory for chute flow assuming that the perpendicular component of velocity is non-zero. An explicit analytical form for the perpendicular velocity profile is deduced which gives rise to an integral expression for the chute stream velocity. Assuming a linear decreasing density profile, numerical integration for the chute stream velocity predicts a non-linear profile which is concave in shape and which is in agreement with recent results from computer simulation and existing experimental data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spencer, A. J. M.: Deformation of an ideal granular material. In: Mechanics of solids, Rodney Hill 60th Anniv. Volume (Hopkins, H. G., Sewell, J. J., eds.), pp. 607–652. Oxford: Pergamon 1982.

    Google Scholar 

  2. Savage, S. B.: The mechanics of rapid granular flows. Adv. Appl. Mech.24, 289–367 (1984).

    Google Scholar 

  3. Campbell, C. S.: Rapid granular flows. Annu. Rev. Fluid. Mech.22, 57–92 (1990).

    Google Scholar 

  4. Jaeger, H. M., Nagel, S. R.: Physics of the granular state. Science255, 1523–1531 (1992).

    Google Scholar 

  5. Savage, S. B.: Disorder, diffusion and structure formation in granular flows. In: Disorder and granular media (Bideau, D., Hansen, A., eds.), pp. 255–285 Elsevier 1993.

  6. Jenkins, J. T., Savage, S. B.: A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid. Mech.130, 187–202 (1983).

    Google Scholar 

  7. Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid. Mech.140, 223–256 (1984).

    Google Scholar 

  8. Haff, P. K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid. Mech.134, 401–430 (1983).

    Google Scholar 

  9. Ahmadi, G.: A generalized continuum theory for flow of granular materials. In: Advances in mechanics and the flow of granular materials (Shahinpoor, M., ed.), vol. II, pp. 497–527. Houston: Gulf Publishing Company, 1983.

    Google Scholar 

  10. Mehrabadi, M. M., Cowin, S. C.: Initial planar deformation of dilatant granular material. J. Mech. Phys. Solids26, 269–284 (1978).

    Google Scholar 

  11. Spencer, A. J. M., Bradley, N. J.: Gravity flow of a granular material in compression between vertical walls and through a tapering vertical channel. Q. J. Mech. Appl. Math.45, 733–746 (1992).

    Google Scholar 

  12. Hill, J. M., Wu, Y. H.: Kinematically determined axially-symmetric plastic flows of metals and granular materials. Q. J. Mech. Appl. Math.44, 451–469 (1991).

    Google Scholar 

  13. Hill, J. M., Wu, Y. H.: Some axially symmetric flows of Mohr-Columb compressible granular materials. Proc. R. Soc. London Ser. A438, 67–93 (1992).

    Google Scholar 

  14. Hill, J. M., Wu, Y. H.: Plastic flows of granular materials of shear index n-I. Yield functions. J. Mech. Phys. Solids.41, 77–93 (1993).

    Google Scholar 

  15. Hill, J. M., Wu, Y. H.: Plastic flows of granular materials of shear index n-II. Plane and axially symmetric problems for n=2. J. Mech. Phys. Solids.41, 95–115 (1993).

    Google Scholar 

  16. O'Mahony, T. C., Spencer, A. J. M.: Theory of rectlinear flow of granular materials. Int. J. Eng. Sci.23, 139–150 (1985).

    Google Scholar 

  17. Hutter, K., Szidarovsky, F., Yakowitz, S.: Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches. Part I: Theory. Acta Mech.63, 87–112 (1986).

    Google Scholar 

  18. Hutter, K., Szidarovsky, F., Yakowitz, S.: Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches. Part II: Numerical results. Acta Mech.63, 239–261 (1986).

    Google Scholar 

  19. Johnson, P. C., Nott, P., Jackson, P.: Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid. Mech.210, 501–535 (1990).

    Google Scholar 

  20. Richman, M. W., Marciniec, R. P.: Gravity-driven granular flows of smooth, inelastic spheres down bumpy inclines. J. Appl. Mech.57, 1036–1043 (1990).

    Google Scholar 

  21. Anderson, K. G., Jackson, R.: A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes. J. Fluid Mech.241, 145–168 (1992).

    Google Scholar 

  22. Abu-Zaid, S., Ahmadi, G.: Analysis of rapid shear flows of granular materials by a kinetic model including frictional losses. Powder Techn.77, 7–17 (1993).

    Google Scholar 

  23. Augenstein, D. A., Hogg, R.: An experimental study of the flow of dry powders over inclines surfaces. Powder Techn.19, 205–215 (1978).

    Google Scholar 

  24. Savage, S. B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid. Mech.92, 53–96 (1979).

    Google Scholar 

  25. Ishida, M., Hatano, H.: The flow of solid particles in an aerated inclined channel. In: Advances in mechanics and the flow of granular materials (Shahinpoor, M., ed.), vol. II, pp. 565–575. Houston: Gulf Publishing Company, 1983.

    Google Scholar 

  26. Drake, T. G.: Structural features in granular flows. J. Geophys. Res.95, 8681–8696 (1990).

    Google Scholar 

  27. Drake, T. G.: Granular flow: physical experiments and their implications for microstructural theories. J. Fluid. Mech.225, 121–152 (1991).

    Google Scholar 

  28. Ahn, H., Brenen, C. E., Sabersky, R. H.: Measurements of velocity, velocity fluctuation, density, and stresses in chute flows of granular materials. J. Appl. Mech.58, 792–803 (1991).

    Google Scholar 

  29. Kruyt, N. P., Verel, W. J. T.: Experimental and theoretical study of rapid flows of cohesionless granular materials down inclined chutes. Powder Techn.73, 109–115 (1992).

    Google Scholar 

  30. Nott, P., Jackson, R.: Frictional-collisional equations of motion for granular materials and their application to flow in aerated chutes. J. Fluid. Mech.241, 125–144 (1992).

    Google Scholar 

  31. Campbell, C. S., Brennen, C. E.: Chute flows of granular material: some computer simulations. J. Appl. Mech.52, 172–178 (1985).

    Google Scholar 

  32. Poschel, T.: Granular material flowing down an inclined chute: a molecular dynamics simulation. J. Phys. II France3, 27–40 (1993).

    Google Scholar 

  33. Walton, O. R.: Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mech. Mat.16, 239–247 (1993).

    Google Scholar 

  34. Zheng, X. M., Hill, J. M.: Molecular dynamics modelling of granular chute flow: Density and velocity profiles. Powder Techn. (to appear).

  35. Campbell, C. S.: Boundary interactions for two dimensional granular flows. Part 1. Flat boundaries asymmetric stress and couple stresses. J. Fluid. Mech.247, 111–136 (1993).

    Google Scholar 

  36. Campbell, C. S.: Boundary interactions for two dimensional granular flows. Part 2. Roughened boundaries. J. Fluid. Mech.247, 137–156 (1993).

    Google Scholar 

  37. Johnson, P. C., Jackson, R.: Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid. Mech.176, 67–93 (1987).

    Google Scholar 

  38. Zheng, X. M., Hill, J. M.: Boundary effects for Couette flow of granular materials: dynamical modelling. Appl. Math. Model. (submitted for publication).

  39. Jenkins, J. T., Hanes, D. M.: The balance of momentum and energy at an interface between colliding and freely flying grains in a rapid granular flow. Phys. Fluids A5, 781–783 (1993).

    Google Scholar 

  40. Spencer, A. J. M.: Instability of steady shear flow granular materials. Acta Mech.64, 77–87 (1986).

    Google Scholar 

  41. Mehrabadi, M. M., Cowin, S. C.: Prefailure and post-failure soil plasticity models. J. Eng. Mech. Div. Am. Soc. Civ. Eng.106, 991–1003 (1980).

    Google Scholar 

  42. Mehrabadi, M. M., Cowin, S. C.: On the double-sliding free-rotating model for the deformation of granular materials. J. Mech. Phys. Solids29, 269–282 (1981).

    Google Scholar 

  43. Harris, D.: A derivation of the Mehrabadi-Cowin equations. J. Mech. Phys. Solids33, 51–59 (1985).

    Google Scholar 

  44. Harris, D.: A mathematical model for the waste region of a long-wall mineworking. J. Mech. Phys. Solids33, 489–524 (1985).

    Google Scholar 

  45. Rietema, K.: The dynamics of fine powders, p. 87. Amsterdam: Elsevier 1991.

    Google Scholar 

  46. Savage, S. B.: Granular flows down rough inclines — review and extension. In: Mechanics of granular materials: new models and constitutive relations (Jenkins, J. T., Satake, M., eds.), pp. 261–282. Amsterdam: Elsevier 1983.

    Google Scholar 

  47. Morrison, H. L., Richmond, O.: Application of Spencer's ideal soil model to granular materials flow. J. Appl. Mech.43, 49–53 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, J.M., Zheng, X.M. Dilatant double shearing theory applied to granular chute flow. Acta Mechanica 118, 97–108 (1996). https://doi.org/10.1007/BF01410510

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410510

Keywords

Navigation