Skip to main content
Log in

Inclined granular flow in a narrow chute

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper we presents a detailed description of granular flow down a flat, narrow chute using discrete element method simulations, with emphasis on the influence of sidewalls on the flow. The overall phase diagram is provided and it is found that there are four flow regimes (no flow, bulk flow, surface flow, and gas flow). The stop curve is very complicated and quite different from that in the case without sidewalls. The effective friction coefficient \( \mu_{{\rm w}}\) increases with pile height and a surface flow occurs when the inclination angle \( \theta\) exceeds a critical value. The profile of \( \mu_{{\rm w}}\) shows that the \( \mu (I)\) rheology is valid in boundary layers. Furthermore, \( \mu_{{\rm w}}\) increases with the velocity of particles and there is a saturation to a nonzero value in static heap. For small , the static heap vanishes and there is a bulk flow. A similarity between basal particles and sidewall particles indicates a universal role of the boundaries. In this bulk flow, there is a transition of the velocity profile with wall friction \( \mu_{{\rm ps}}\). When \( \mu_{{\rm ps}}\) is large, the velocity is linear and decreases with increasing height. With small \( \mu_{{\rm ps}}\), the velocity is nonlinear and the flow rate is roughly proportional to 3/2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Bagnold, Proc. R. Soc. London Ser. A. Math. Phys. Sci. 225, 49 (1954)

    Article  ADS  Google Scholar 

  2. L.E. Silbert et al., Phys. Rev. E 64, 051302 (2001)

    Article  ADS  Google Scholar 

  3. S. Ogawa, A. Umemura, N. Oshima, Z. Angew. Math. Phys. 31, 483 (1980)

    Article  Google Scholar 

  4. J.T. Jenkins, S.B. Savage, J. Fluid Mech. 130, 187 (1983)

    Article  ADS  Google Scholar 

  5. M.W. Richman, Acta Mech. 75, 227 (1988)

    Article  Google Scholar 

  6. P. Jop, Y. Forterre, O. Pouliquen, J. Fluid Mech. 541, 167 (2005)

    Article  ADS  Google Scholar 

  7. K. Hui et al., J. Fluid Mech. 145, 223 (1984)

    Article  ADS  Google Scholar 

  8. J.T. Jenkins, M.W. Richman, J. Fluid Mech. 171, 53 (1986)

    Article  ADS  Google Scholar 

  9. M.Y. Louge, S.C. Keast, Phys. Fluids 13, 1213 (2001)

    Article  ADS  Google Scholar 

  10. G.D.R. MiDi, Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  11. D.M. Hanes, O.R. Walton, Powder Technol. 109, 133 (2000)

    Article  Google Scholar 

  12. L.E. Silbert et al., Phys. Fluids 14, 2637 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Delannay et al., Nat. Mater. 6, 99 (2007)

    Article  ADS  Google Scholar 

  14. J. Rajchenbach, Phys. Rev. Lett. 90, 144302 (2003)

    Article  ADS  Google Scholar 

  15. T. Borzsonyi, R.E. Ecke, Phys. Rev. E 74, 061301 (2006)

    Article  ADS  Google Scholar 

  16. W.T. Bi et al., Phys. Fluids 18, 123302 (2006)

    Article  ADS  Google Scholar 

  17. A.J. Holyoake, J.N. McElwaine, J. Fluid Mech. 710, 35 (2012)

    Article  ADS  Google Scholar 

  18. O. Pouliquen, Phys. Fluids 11, 542 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  19. P.C. Johnson, P. Nott, R. Jackson, J. Fluid Mech. 210, 501 (1990)

    Article  ADS  Google Scholar 

  20. O.R. Walton, Mech. Mater. 16, 239 (1993)

    Article  ADS  Google Scholar 

  21. C.S. Campbell, C.E. Brennen, J. Appl. Mech. Trans. ASME 52, 172 (1985)

    Article  ADS  Google Scholar 

  22. N. Brodu, P. Richard, R. Delannay, Phys. Rev. E 87, 022202 (2013)

    Article  ADS  Google Scholar 

  23. N. Brodu et al., J. Fluid Mech. 769, 218 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Taberlet et al., Phys. Rev. Lett. 91, 064301 (2003)

    Article  ADS  Google Scholar 

  25. N. Taberlet, P. Richard, R. Delannay, Comput. Math. Appl. 55, 230 (2008)

    Article  Google Scholar 

  26. P. Richard et al., Phys. Rev. Lett. 101, 248002 (2008)

    Article  ADS  Google Scholar 

  27. D. Gollin, D. Berzi, E.T. Bowman, Granular Matter 19, 56 (2017)

    Article  Google Scholar 

  28. R.D. Mindlin, J. Appl. Mech. 16, 259 (1949)

    MathSciNet  Google Scholar 

  29. Y. Tian et al., Comput. Chem. Eng. 104, 231 (2017) (Suppl. C)

    Article  Google Scholar 

  30. V.J.-L. Ralaiarisoa et al., EPJ Web of Conferences 140, 03081 (2017)

    Article  Google Scholar 

  31. T. Weinhart et al., Granular Matter 14, 531 (2012)

    Article  Google Scholar 

  32. G. Yang, Influence of Inclined Angles on the Stability of Inclined Granular Flows Down Rough Bottoms, in Proceedings of the 7th International Conference on Discrete Element Methods, edited by X. Li, Y. Feng, G. Mustoe (Springer Singapore, Singapore, 2017) pp. 647--657

  33. T.S. Komatsu et al., Phys. Rev. Lett. 86, 1757 (2001)

    Article  ADS  Google Scholar 

  34. D. Bonamy, F. Daviaud, L. Laurent, Phys. Fluids 14, 1666 (2002)

    Article  ADS  Google Scholar 

  35. N. Taberlet et al., Phys. Rev. Lett. 91, 264301 (2003)

    Article  ADS  Google Scholar 

  36. Y. Forterre, O. Pouliquen, J. Fluid Mech. 486, 21 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. A.V. Orpe, D.V. Khakhar, J. Fluid Mech. 571, 1 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Jérome et al., J. Stat. Mech.: Theor. Exp. 2008, P03009 (2008)

    Google Scholar 

  39. L. Sarno, Experimental Investigation on the Effects of the Fixed Boundaries in Channelized Dry Granular Flows (Rock Mechanics and Rock Engineering, 2017)

  40. L. Sarno et al., Phys. Fluids 26, 103303 (2014)

    Article  ADS  Google Scholar 

  41. L. Sarno et al., Adv. Water Resour. 100, 183 (2017)

    Article  ADS  Google Scholar 

  42. W. Losert et al., Phys. Rev. Lett. 85, 1428 (2000)

    Article  ADS  Google Scholar 

  43. D.M. Mueth, Phys. Rev. E 67, 011304 (2003)

    Article  ADS  Google Scholar 

  44. P.K. Haff, J. Rheol. 30, 931 (1986)

    Article  ADS  Google Scholar 

  45. E. Azanza, F. Chevoir, P. Moucheront, J. Fluid Mech. 400, 199 (1999)

    Article  ADS  Google Scholar 

  46. R. Artoni, P. Richard, Phys. Rev. Lett. 115, 158001 (2015)

    Article  ADS  Google Scholar 

  47. R. Artoni et al., Phys. Rev. Lett. 108, 238002 (2012)

    Article  ADS  Google Scholar 

  48. V. Kumaran, S. Bharathraj, Phys. Fluids 25, 070604 (2013)

    Article  ADS  Google Scholar 

  49. H. Ahn, C. Brennen, Channel flows of granular materials and their rheological implications, in Particulate Two-Phase Flow, edited by M.C. Roco (Butterworth-Heinemann, 1993) pp. 210--243

  50. H. Ahn, C.E. Brennen, R.H. Sabersky, J. Appl. Mech. Trans. ASME 59, 109 (1992)

    Article  ADS  Google Scholar 

  51. T.G. Drake, J. Fluid Mech. 225, 121 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Courrech du Pont et al., Phys. Rev. Lett. 94, 048003 (2005)

    Article  ADS  Google Scholar 

  53. R.M. Nedderman, C. Laohakul, Powder Technol. 25, 91 (1980)

    Article  Google Scholar 

  54. P. Richard et al., Phys. Rev. Lett. 101, 248002 (2008)

    Article  ADS  Google Scholar 

  55. Y. Khidas et al., Eur. Phys. J. E 10, 387 (2003)

    Article  Google Scholar 

  56. T.G. Drake, J. Geophys. Res.: Solid Earth Planets 95, 8681 (1990)

    Article  Google Scholar 

  57. Y. Forterre, O. Pouliquen, Phys. Rev. Lett. 86, 5886 (2001)

    Article  ADS  Google Scholar 

  58. W.T. Bi et al., J. Phys.: Condens. Matter 17, S2457 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, G., Lin, P. et al. Inclined granular flow in a narrow chute. Eur. Phys. J. E 42, 40 (2019). https://doi.org/10.1140/epje/i2019-11796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11796-8

Keywords

Navigation