Skip to main content
Log in

Magnetic gap and magnetization curve for a mixed valent semiconductor: A variational approach

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The ground state properties of the nondegenerate periodic Anderson model, which includes an external magnetic field, are studied variationally. We takef 1f 2 valence mixing with two electrons per site, when the ground state is expected to be nonmetallic. A modified Stevens-Brandow-type trial wavefunction is used, which describes the condensate of a linear combination of singlet and tripletfd pair states. There are two variational parameters: the hybridization temperature, and a parameter to control the total magnetization. Up to a threshold fieldH t, the singlet ground state prevails, while forH>H t, the magnetization increases steeply withH. The magnetic gap derived fromH t is of the order of magnitude found by Jullien and Martin. The magnetization is dominated by the contribution off-electrons which become gradually extracted from the singlet bound state (dehybridization). The valence depends on the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grewe, N., Leder, H.J., Entel, P.: Festkörperprobleme. Vol. XX, p. 413. Braunschweig: Vieweg 1980

    Google Scholar 

  2. Lawrence, J.M., Riseborough, P.S., Parks, R.D.: Rep. Prog. Phys.44, 1 (1981)

    Google Scholar 

  3. Falicov, L.M., Hanke, W., Maple, M.B. (eds.): Valence fluctuations in solids. Amsterdam: North Holland 1981

    Google Scholar 

  4. Wachter, P., Boppart, H. (eds.). Valence, instabilities. Amsterdam: North Holland 1982

    Google Scholar 

  5. Mott, N.F.: Philos. Mag.30, 403 (1974)

    Google Scholar 

  6. Martin, R.M., Allen, J.W.: J. Appl. Phys.50, 7561 (1979)

    Google Scholar 

  7. Johansson, W.R., Crabtree, G.W., Edelstein, A.S., McMasters, O.D.: Phys. Rev. Lett.46, 504 (1981)

    Google Scholar 

  8. Batlogg, B., Schmidt, P.H., Rowell, J.M.:Ref. 3, p. 267

    Google Scholar 

  9. Güntherodt, G., Thompson, W.A., Holtzberg, F., Fisk, Z.: Ref. 4, p. 313

    Google Scholar 

  10. von Molnar, S., Theis, T., Benoit, A., Briggs, A., Floquet, J., Ravex, J., Fisk, Z.:Ref. 4, p. 389

    Google Scholar 

  11. Frankowski, I., Wachter, P.:Ref. 4, p. 309

    Google Scholar 

  12. Kuramoto, Y., Müller-Hartmann, E.:Ref. 3, p. 139

    Google Scholar 

  13. Anderson, P.W.:Ref. 3, p. 451

    Google Scholar 

  14. Jullien, R., Martin, R.M.: Phys. Rev. B26, 6173 (1982)

    Google Scholar 

  15. Martin, R.M., Allen, J.W.:Ref. 3 p. 85. See also: Martin, R.M.: Phys. Rev. Lett.48, 362 (1982)

    Google Scholar 

  16. Varma, C.M., Yafet, Y.: Phys. Rev. B13, 2950 (1976)

    Google Scholar 

  17. Leder, H.J., Mühlschlegel, B.: Z. Phys. B-Condensed Matter29, 341 (1978)

    Google Scholar 

  18. Stevens, K.W.H.: J. Phys. C11, 985 (1978)

    Google Scholar 

  19. Brandow, B.H.: Int. J. Quant. Chem. Symp.13, 423 (1979)

    Google Scholar 

  20. Fazekas, P.: Z. Phys. B-Condensed Matter47, 301 (1982)

    Google Scholar 

  21. Gutzwiller, M.C.: Phys. Rev.137, A1726 (1965)

    Google Scholar 

  22. Wohlleben, D.K.:Ref. 3 p 1

    Google Scholar 

  23. Stevens, K.W.H.: J. Phys. C13, L359 (1980)

    Google Scholar 

  24. Brandow, B.H.: Solid State Commun.39, 1233 (1981)

    Google Scholar 

  25. Kaplan, T.A., Mahanti, S.D.: Phys. Lett.51A, 265 (1975)

    Google Scholar 

  26. Mattens, W.C.M., de Chatel, P.F., Moleman, A.C., de Boer, F.R.: Physica96B, 138 (1979)

    Google Scholar 

  27. Mattens, W.C.M.: Thesis, University of Amsterdam (1980)

  28. Wohlleben, D., Röhler, J., Pott, R., Neumann, G., Holland-Moritz, E.: Ref. 4 p 141

    Google Scholar 

  29. Vollhardt, D.: preprint MPI-PAE/PTh 30/83 (1983)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazekas, P. Magnetic gap and magnetization curve for a mixed valent semiconductor: A variational approach. Z. Physik B - Condensed Matter 53, 197–214 (1983). https://doi.org/10.1007/BF01388541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388541

Keywords

Navigation