Skip to main content
Log in

Semiempirical calculation of the CH4 + CH3 · → CH3 · + CH4 radical-reaction potential surfaces in a basis of frontier orbitals

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

A semiempirical approach is suggested to describe potential-energy surfaces (PESs) of some radical reactions in the zero-differential overlap (ZDO) approximation. An incomplete basis set is used including only frontier (single-filled) radical molecular orbitals (MOs) depending on geometrical parameters. All possible configurations are taken into account. The parameter selection techniques are analyzed. The approach is applied to PES calculation of the CH4 + CH3 · → CH3 · + CH4 reaction. Some points of the PES are verified by a nonempirical method using the perturbation theory and taking into account the correlation energy. The relaxation energies are calculated. The one-center parameters are determined nonempirically from the CH3 + CH3 ·, and CH3 energetics. The two-center parameters are found by modeling the CH4 → CH3 · + H and C2H6 → 2CH3 reactions in the same single-orbital approximation. The energy parameters of the reactions considered are overestimated by 10%, whereas the geometrical parameters are under-estimated by 15%. Further, a comparative analysis of the Hartree-Fock solutions and those including correlation interactions (CIs) is given. The variations in the spin and charge densities on the reaction centers are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw Hill, New York (1969).

    Google Scholar 

  2. M. Fukui, The World of Quantum Chemistry, Reidel, Dordrecht (1974).

    Google Scholar 

  3. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw Hill, New York (1970).

    Google Scholar 

  4. P. H. Cribb, S. Nordholm, and N. S. Hush, Chem. Phys.,47, No. 2, 135–139 (1980).

    Google Scholar 

  5. S. K. Sung and S. S. Sohn, Tetrahedron Lett.,23, No. 36, 3703–3707 (1982).

    Google Scholar 

  6. R. D. Gilliom, J. Am. Chem. Soc.,99, No. 26, 8399–8402, (1977).

    Google Scholar 

  7. M. J. S. Dewar and E. Haselbash, J. Am. Chem. Soc.,92, No. 3, 590–599, (1970).

    Google Scholar 

  8. M. J. Rayes-Meaume, J. J. Dunnenberg, and J. L. Witten, J. Am. Chem. Soc.,100, No. 3, 747–749, (1978).

    Google Scholar 

  9. R. D. Gilliom, J. Comput. Chem.,5, No. 3, 237–246 (1984).

    Google Scholar 

  10. E. Wuesh, J. M. Lunch, A. Oliva, and J. Bertran, J. Chem. Soc. Perkin Trans.,2, 211–213 (1987).

    Google Scholar 

  11. M. Sana, G. Leroy, and J. L. Villaveces, Theor. Chim. Acta,65, No. 2, 109–125 (1984).

    Google Scholar 

  12. B. S. Lee, I. Lee, C. H. Song, and J. Y. Choi, J. Comput. Chem.,6, No. 5, 486–491 (1985).

    Google Scholar 

  13. E. Canadella, S. Olivella, and J. H. Poblet, J. Phys. Chem.,88, No. 6, 3545–3550 (1984).

    Google Scholar 

  14. T. A. Wildman, Chem. Phys. Lett.,126, No. 3/4, 325–329 (1986).

    Google Scholar 

  15. G. M. Zhidomirov, A. A. Bagatur'yants, and I. A. Abronin, Applied Quantum Chemistry [in Russian], Khimiya, Moscow (1979).

    Google Scholar 

  16. T. É. Moskovskaya and P. V. Schastnev, Teor. Éksp. Khim.,13, No. 5, 487–493 (1977).

    Google Scholar 

  17. J. A. Pople and G. A. Segal, Chem. Phys.,44, No. 9, 3289–3296 (1966).

    Google Scholar 

Download references

Authors

Additional information

Institute of Chemical Kinetics and Combustion, Academy of Sciences of the USSR, Siberian Branch, Novosibirsk. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 4, pp. 499–506, July–August, 1991. Original article submitted February 10, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spirina, O.B., Shokhirev, N.V. Semiempirical calculation of the CH4 + CH3 · → CH3 · + CH4 radical-reaction potential surfaces in a basis of frontier orbitals. Theor Exp Chem 27, 437–442 (1991). https://doi.org/10.1007/BF01372526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01372526

Keywords

Navigation