Skip to main content
Log in

Density matrix, superconductivity and molecular structure

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

Starting from Yang's offdiagonal long-range order concept and the macroscopic occupation condition for the second order density matrix as the basis for condensation phenomena we develop the notion that the extremal wave function (EWF), which is related to these conditions, leads to superconductivity in monatomic systems. We prove that the BCS model and the version where it is projected onto a fixed number of particles posesses EWF properties, differs negligibly from the EWF, and conserves offdiagonal ong-range order. The condition for the EWF to be energetically favored is the presence of macroscopic degenerate one-electron energy levels in the system, partial occupation of this degenerate region, and also an effective attraction among the electrons. Considerations are advanced indicating that these conditions are satisfied in the high temperature superconducting metal oxide ceramics, due to the presence of macroscopically degenerate diffuse orbitals distributed among the O ions in the CuO2 layers, and with the effective screening of these layers by the metal-like La, Ba, Y, or O layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. J. Bardeen, L. M. Cooper, and J. R. Schrieffer, Phys. Rev.,108, No. 4, 1175–1203, 1957.

    Google Scholar 

  2. C. N. Yang, Rev. Mod. Phys.,34, No. 3, 694–704 (1962).

    Google Scholar 

  3. A. J. Coleman, Rev. Mod. Phys.,35, No. 3, 668–689 (1963).

    Google Scholar 

  4. F. Bloch, Phys. Rev.A137, No. 3, 787–795 (1963).

    Google Scholar 

  5. A. J. Coleman and S. Pruski, Can. J. Phys.,43, No. 7, 2142–2160 (1965).

    Google Scholar 

  6. J. G. Benorz and K. A. Muller, Z. Phys.,B64, No. 2, 189–143 (1986).

    Google Scholar 

  7. A. S. Aleksandrov, Zh. Fiz. Khim.,57, No. 2, 273–284 (1983).

    Google Scholar 

  8. W. Little, Usp. Fiz. Nauk,86, No. 2, 315–370 (1965).

    Google Scholar 

  9. B. Shirakawa and S. Ikeda, Polymer,2, No. 2, 231–244 (1971).

    Google Scholar 

  10. R. L. Green, G. B. Street, L. I. Suter, Phys. Rev. Lett.,34, No. 10, 577–579 (1975).

    Google Scholar 

  11. S. Barisic and A. Bjelis, Theoretical Aspects of Band Structure, B. Kamimura (ed.) Reidel Publishers, Dordrecht (1985), pp. 49–122.

    Google Scholar 

  12. D. A. Kirzhnits, Usp. Fiz. Nauk;125, No. 1, 169–194 (1978).

    Google Scholar 

  13. S. A. Moskalenko, Fiz. Tverd. Tela,4, No. 1, 276–284 (1962).

    Google Scholar 

  14. D. Allender, J. Bray, and J. Bardeen, Phys. Rev.,B7, No. 3, 1020–1031 (1973).

    Google Scholar 

  15. W. Kohn and D. Sherrington, Revs. Mod. Phys.,42, No. 1, 1–11 (1970).

    Google Scholar 

  16. A. V. Luzanov and M. H. Mestechkin, Teor. Mat. Fiz.,48, No. 2, 266–275 (1981).

    Google Scholar 

  17. V. L. Ginzburg, Usp. Fiz. Nauk;95, No. 1, 91–110 (1968).

    Google Scholar 

  18. J. A. Coleman, A General Theory for Superconduction Phenomena in Physics; Queens University Preprint, Kingston (1975).

    Google Scholar 

  19. B. T. Matthias, Superconductivity; Proc. 1st Advanced Study Summer Institute, Vol. 1. Gordon and Breach Publishers, New York, (1968) pp. 225–293.

    Google Scholar 

  20. V. Z. Kresin, Zh. Struk. Khim.,12, No. 4, 745–759 (1971).

    Google Scholar 

  21. Ph. Durand, Reduced Density Matrices with Applications to Physical and Chemical Systems, A. J. Coleman and R. M. Erdahl (eds.), Queens University, Kingston (1968), pp. 283–299.

    Google Scholar 

  22. A. V. Luzanov and Y. V. Ivanov, Teor. Éksp. Khim.,26, No. 4, 385–396 (1990).

    Google Scholar 

  23. B. T. Matthias, Int. Quantum Chem.,S3, No. 2, 903–904 (1970).

    Google Scholar 

  24. M. E. Rensink, ANN. Phys.,44, No. 1, 105–111 (1967).

    Google Scholar 

  25. J. A. Coleman, Can. Phys.,42, No, 1, 226–239 (1964).

    Google Scholar 

  26. M. M. Mestechkin, Zh. Éksp. Teor. Fiz.,55, No. 7, 2003–2009 (1968).

    Google Scholar 

  27. Ch. B. Lushchik, Pis'ma Ch. Éksp. Teor. Fiz.,46, No. 3, 123–124 (1987).

    Google Scholar 

  28. M. M. Mestechkin, Theory of Atomic and Molecular Shells [in Russian], Vilnius (1971), pp. 346–351.

  29. M. M. Mestechkin, Int. J. Quantum Chem.,13, No. 2, 469–481 (1978).

    Google Scholar 

  30. I. A. Misurkin and A. A. Ovchinnikov, Teor. Éksp. Khim.,3, No. 4, 431–436 (1967).

    Google Scholar 

  31. A. J. Coleman, J. Math. Phys.,6, No. 9, 1425–1431 (1965).

    Google Scholar 

  32. M. M. Mestechkin, Int. J. Quantum Chem.,13, No. 2, 675–672 (1967).

    Google Scholar 

  33. M. M. Mestechkin, Density Matrix Methods in the Theory of Molecules [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  34. Biol. Inostr. Hauch.-Tekhn. TASS, No. 40, 41–42 (1987).

  35. D. Douglas and L. Falicov, Superconductivity [in Russian] Nauka Moscow (1967), p. 30.

    Google Scholar 

  36. T. Ando, Rev. Mod. Phys.,35, No. 3, 690–702 (1963).

    Google Scholar 

  37. J. Nauman, Mathematical Foundations of Quantum Mechanics [in Russian], Nauka Moscow (1964).

    Google Scholar 

  38. P. D. Nigman, Usp. Fiz. Nauk,154, No. 4, 675–682 (1987).

    Google Scholar 

  39. G. M. Zhislin, Tr. Mosk Mat. O va,9, 81–120 (1960).

    Google Scholar 

  40. G. Delgado-Barrio and R. F. Pratt, Phys. Rev.,A12, No. 6, 2288–2297 (1975).

    Google Scholar 

  41. Encyclopedia of Chemistry, Vol. 2, [in Russian] I. L. Knunyantsa (ed.), Sov. Entsikl. (1990).

  42. H. C. Longuet-Higgins, J. Chem. Phys.,18, No. 3, 265–274 (1970).

    Google Scholar 

  43. M. M. Mestechkin and G. E. Whyman, Molecular Physics,69, No. 4, 775–782 (1990).

    Google Scholar 

  44. D. L. Lifar', D. P. Moiseev, A. A. Motuz, et. al., Fiz. Nizki Temp.13, No. 8, 876–879 (1987).

    Google Scholar 

  45. V. N. Antonov, Vl. N. Antonov, V. G. Bar'yakhtar, et al., Physical Problems in High Temperature Superconductivity [in Russian], Naukova Dumka, Kiev (1990), pp. 93–106.

    Google Scholar 

  46. G. T. Klimko and M. M. Mestechkin, Int. J. Quantum Chem.,37, No. 4, 753–771 (1990).

    Google Scholar 

  47. M. Hammermesh, Group Theory and Its Applications to Physical Problems [in Russian], Mir Moscow, (19660.

    Google Scholar 

  48. C. C. J. Roothaan, Rev. Mod. Phys.,32, No. 2, 179–185 (1960).

    Google Scholar 

  49. I. E. Tamm, Fundamentals of the Theory of Electricity [in Russian], Nauka Moscow (1966).

    Google Scholar 

  50. Myung Hvan Whangbo and C. C. Torardi, Science,249, 1143–1151 (1990).

    Google Scholar 

  51. B. Fisher, Physica,C153–155, Part 2, 1349–1350 (1988).

    Google Scholar 

Download references

Authors

Additional information

L. M. Litvinenko Institute for Physical-Organic Chemistry and the Chemistry of Coal, Academy of Science of the Ukrainian SSR, Donetsk. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 4, pp. 395–413, July–August, 1991. Original article submitted February 25, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mestechkin, M.M., Klimko, G.T. & Vaiman, G.E. Density matrix, superconductivity and molecular structure. Theor Exp Chem 27, 341–356 (1991). https://doi.org/10.1007/BF01372506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01372506

Keywords

Navigation