Skip to main content
Log in

Isolated neurosecretory nerve endings as a tool for studying the mechanism of stimulus-secretion coupling

  • Papers
  • Published:
Bioscience Reports

Abstract

In the present paper we discuss the properties of a recently developed preparation of isolated neurosecretory nerve endings obtained from the rate neurohypophysis. These nerve terminals release two neurohormones, oxytocin and vasopressin, which are easily assayed by radioimmunoassay. Depolarization-induced secretion is dependent on the same parameters as those regulating release from the whole neural lobe. The isolated nerve endings can be permeabilized by means of digitonin; a treatment which gives direct access to the cytoplasm allowing the study of the minimal requirements for inducing neuropeptide release. Furthermore, some nerve endings are large enough to allow the use of the patch-clamp technique. In the present paper we present evidences which show that the isolated neurohypophysial nerve terminals represent a protent tool for studying the mechanism of stimulus-secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, P. F. and Rink, T. J. (1975). Catecholamine release from bovine adrenal medulla in response to maintained depolarization.Journal of Physiology 253:593–620.

    Google Scholar 

  • Brethes, D., Dayanithi, G., Letellier, L. and Nordmann, J. J. (1987). Depolarization-induced Ca2+ increase in isolated neurosecretory nerve terminals measured with Fura-2.Proceedings of the National Academy of Sciences of the USA 84:1439–1443.

    Google Scholar 

  • Brocklehurst, K. M. and Pollard H. B. (1985). Enhancement of Ca2+-induced catecholamine release by the phorbol ester TPA in digitonin-permeabilized cultured bovine adrenal chromaffin cells.FEBS Letter 1983:107–110.

    Google Scholar 

  • Cazalis, M., Dayanithi, G. and Nordmann, J. J. (1985). The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe.Journal of Physiology 369:45–60.

    Google Scholar 

  • Cazalis, M., Dayanithi, G. and Nordmann, J. J. (1987a). Hormone-release from isolated nerve endings of the rat neurohypophysis.Journal of Physiology 390 (in press).

  • Cazalis, M., Dayanithi, G. and Nordmann, J. J. (1987b). Requirements for hormone release from permeabilized nerve endings isolated from the rat neurohypophysis.Journal of Physiology 390 (in press).

  • Coronado, R. and Latoree, R. (1983). Phospholipid bilayers made from monolayers on patch-clamp pipettes.Biophysical Journal 43:231–236.

    Google Scholar 

  • Dayanithi, G., Cazalis, M. and Nordmann, J. J. (1987). Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis.Nature 325:813–816.

    Google Scholar 

  • Dreifuss, J. J. and Kelly, J. S. (1972). Recurrent inhibition of antidromically identified supraoptic neurones.Journal of Physiology 220:87–103.

    Google Scholar 

  • Dunn, L. A. and Holz, R. W. (1983). Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.Journal of Biological Chemistry 258:4989–4993.

    Google Scholar 

  • Dutton, A. and Dyball, R. E. J. (1979). Phasic firing enhances vasopressin release from the rat neurohypophysis.Journal of Physiology 290:433–440.

    Google Scholar 

  • Fenwick, E. M., Marty, A. and Neher, E. (1982a). A patch-clamp study of bovine chromaffin cells and their sensitivy of acetylcholine.Journal of Physiology 331:577–597.

    Google Scholar 

  • Fenwick, E. M., Marty, A. and Neher, E. (1982b). Sodium and calcium channels in bovine chromaffin cells.Journal of Physiology 331:599–635.

    Google Scholar 

  • Freedman, S. B., Dawson, G., Villereal, M. L. and Miller, R. J. (1984). Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines.Journal of Neurosciences 4:1453–1467.

    Google Scholar 

  • Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R. and Gandia, L. (1984). Dihydropyridine Bay K 8644 activates chromaffin cell calcium channels.Nature 309:69–71.

    Google Scholar 

  • Greenberg, D. A., Carpenter, C. L. and Cooper E. C. (1985). Stimulation of calcium uptake in PC 12 cells by the dihydropyridine agonist Bay K 8644.Journal of Neurochemistry 45:990–993.

    Google Scholar 

  • Grynkiewicz, G., Poeni, M. and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties.Journal of Biological Chemistry 260:3440–3450.

    Google Scholar 

  • Hagiwara, S. and Byerly, L. (1983). The calcium channel.Trends in Neuroscience 6:189–193.

    Google Scholar 

  • Ingram, C. D., Bicknell, R. J., Brown, D. and Leng, G. (1982). Rapid fatigue of neuropeptide secretion during continual electrical stimulation.Neuroendocrinology 35:424–428.

    Google Scholar 

  • Kidokoro, Y. (1985). Electrophysiology of adrenal chromaffin cells. In:The Electrophysiology of the Secretory Cell (A. M. Poisner and S. M. Trifaro, Eds.), Elsevier, New York, pp. 195–218.

    Google Scholar 

  • Knight, D. E. and Baker, P. F. (1982). Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electrical field.Journal of Membrane Biology 68:107–140.

    Google Scholar 

  • LaBella, F. S. and Sanwal, M. (1965). Isolation of nerve endings from the posterior pituitary gland.Journal of Cell Biology 25:179–191.

    Google Scholar 

  • Lemos, J. R. and Nordmann, J. J. (1986a). Ionic channels and hormone release from peptidergic nerve terminals.Journal of Experimental Biology 124:53–72.

    Google Scholar 

  • Lemos, J. R. and Nordmann, J. J. (1986b). Ion channels in rat neural lobe nerve terminals.Soc. Neurosci. Abst. 16:561.

    Google Scholar 

  • Lemos, J. R., Nordmann, J. J., Cooke, I. M. and Stuenkel, E. L. (1986). Single channels and ionic currents in peptidergic nerve terminals.Nature 319:410–412.

    Google Scholar 

  • Lemos, J. R. and Nowycky, M. (1987). One type of Ca-channel in nerve terminals from the rat neurohypophysis responds to dihydropyridines.Soc. Neuroscience Abst. 17, in the press.

  • Lemos, J. R., Ocorr, K. A. and Nordmann, J. J. (1987). Ionic channels in neurosecretory granules from rat neural lobe.Biophysical Journal 51:64a.

    Google Scholar 

  • Maruyama, Y. and Peterson, O. H. (1982). Single channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini.Nature 299:159–161.

    Google Scholar 

  • Mason, W. T. and Dyball, R. E. J. (1986). Single ion channel activity in peptidergic nerve terminals of the isolated rat neurohypophysis related to stimulation of neural stalk axons.Brain Research 383:279–286.

    Google Scholar 

  • Müller, J. R., Thorn, N. A. and Torp-Pedersen, C. (1975). Effects of calcium and sodium on vasopressinin vitro induced by a prolonged potassium stimulation.Acta Endocrinologica 79:51–59.

    Google Scholar 

  • Nordmann, J. J. (1975). Hormone release and Ca uptake in the rat neurohypophysis. InCalcium Transport in Contraction and Secretion (E. Carafoli, F. Clementi and W. Drabikowski, Eds.), Amsterdam, North Holland, pp. 281–286.

    Google Scholar 

  • Nordmann, J. J. (1976). Evidence for calcium inactivation during hormone release in the rat neurohypophysis.Journal of Experimental Biology 65:665–680.

    Google Scholar 

  • Nordmann, J. J. (1983). Stimulus-secretion coupling.Progress in Brain Research 60:281–303.

    Google Scholar 

  • Nordmann, J. J., Desmazes, J. P. and Georgescault, D. (1982). The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage-sensitive dye, and the release of neurohypophysial hormones.Neuroscience 7:731–737.

    Google Scholar 

  • Nordmann, J. J., Dayanithi, G. and Cazalis, M. (1986). Do opioid peptides modulate, at the level of the nerve endings, the release of neurohypophysial hormones?Experimental Brain Research 61:560–566.

    Google Scholar 

  • Nordmann, J. J. and Stuenkel, E. L. (1986). Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat.Journal of Physiology 380:521–539.

    Google Scholar 

  • Nowycky, M. C., Fox, A. P. and Tsien, R. W. (1985). Three types of neuronal calcium channel with different calcium agonist sensitivity.Nature 316:440–442.

    Google Scholar 

  • Pocotte, S. L., Frye, R. A., Senter, R. A., Terbusch, D. R., Lee, S. A. and Holz, R. W. (1985). Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cells culture.Proceedings of the National Academy of Sciences of the USA 82:930–934.

    Google Scholar 

  • Poulain, D. A. and Wakerley, J. B. (1982). Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin.Neuroscience 7:773–808.

    Google Scholar 

  • Pozzan, T., Gatti, G., Dozio, N., Vicentini, L. M. and Meldolesi, J. (1984). Ca2+-dependent and independent release of neurotransmitters from PC 12 cells: a role for protein kinase C activation?Journal of Cell Biology 99:628–638.

    Google Scholar 

  • Sachs, H. and Haller, E. W. (1968). Further studies on the capacity of the neurohypophysis to release vasopressin.Endocrinology 83:251–262.

    Google Scholar 

  • Stanley, E. and Ehrenstein, G. (1985). A model for exocytosis based on the opening of calcium-activated potassium channels in vesicles.Life Sciences 37:1985–1995.

    Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I. (1983). Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate.Nature 306:67–69.

    Google Scholar 

  • Summerlee, A. J. S., O'Byrne, K. T., Paisley, A. C., Breeze, M. F. and Porter, D. G. (1984). Relaxin affects the central control of oxytocin release.Nature 309:372–374.

    Google Scholar 

  • Wilson, S. P. and Kirshner, N. (1983). Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells.Journal of Biological Chemistry 258:4994–5000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordmann, J.J., Dayanithi, G. & Lemos, J.R. Isolated neurosecretory nerve endings as a tool for studying the mechanism of stimulus-secretion coupling. Biosci Rep 7, 411–426 (1987). https://doi.org/10.1007/BF01362504

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01362504

Key Words

Navigation