Skip to main content
Log in

Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Intracellular recording and dye injection (Procion Yellow) techniques were applied to a set of nine giant, homolateral cells of the lobula plate of dipterans (Phaenicia, Sarcophaga —the “big vertical cells” (or V-cells) of Pierantoni (1974).

Anatomical Findings

The V-cells can be divided into 4 distinctly different groups which, in principle, agree with the classification (though into 3 groups) given by Strausfeld (1976 a). In each case, the cell body lies in the caudal cell body layer of the optic pedunculus with the cell axon extending at the caudal surface of the lobula plate. The axons run through the optic pedunculus and terminate in the ventrolateral part of the protocerebrum. The large bifurcated dendrites and their small dendritic branches form a fan which lies in a frontal plane perpendicular to the columnar arrangement of this ganglion and penetrate the whole dorso-ventral region of the lobula plate. The highest density of dendritic branches is found in the anterior part of the retino-topic projection. It decreases gradually towards the projection of the posterior retina in the medial lobula plate. The dendritic field widths (Fig. 9) extend approximately 60 degrees in the horizontal and 200 degrees in the vertical direction; thus, there is a considerable degree of overlap in the horizontal direction. The posterior V-cells V6 to V8 possess a more extended horizontal field width in the dorsal part of the eye. These anatomical findings were verified by physiological measurements of the receptive field widths.

Physiological Findings

The anterior V-cells (V1 to V3) are directionally sensitive to vertical movement: upward and downward pattern motion causes hyper-polarizing and depolarizing DC-membrane potential shifts, respectively. The lateral and posterior V-cells (V4 to V8) exhibit an additional sensitivity to horizontal movement giving rise to depolarizing and hyperpo-larizing DC-membrane potential shifts with progressive and regressive pattern motion, respectively (Fig. 14). The directional sensitivity of V9 is not known. All V-cells respond to monocular, ipsilateral stimulation only. In addition to their directional sensitivity to moving patterns they respond to light intensity changes with a strong increase in the fluctuations of the transmembrane potential (which is proportional to the logarithm of the intensity). The average DC-membrane potential changes only very slightly (+3 mV) to a hundredfold increase in light intensity. These graduated potentials are sometimes accompanied by small, rapid spike-like potentials. Regular action potentials have never been observed under natural conditions, but can be elicited by hyperpolarizing current injection. The ionic basis of the observed potential behaviour is discussed.

On physiological and anatomical grounds, the V-cells are believed to be output elements of the lobula plate with connections to descending neurones of the ventral nerve cord (Strausfeld and Obermayer, 1976) and to heterolateral elements. The anatomical and physiological properties of a heterolateral element (VS1) are discussed and evidence is presented to show that this cell is postsynaptic to the V-cells.

In general, the results of this study accord with results obtained onCalliphora (Hausen, 1976c; Hengstenberg, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum, H., Zettler, F., Järvilehto, M.: Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowflyCalliphora. Z. vergl. Physiol.70, 414–424 (1970)

    Google Scholar 

  • Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Organization of visual axes in the compound eye of the flyMusca domestica L. and behavioural consequences. J. comp. Physiol.102, 305–320 (1975)

    Google Scholar 

  • Bishop, L.G., Keehn, D.G.: Neural correlates of the optomotor response in the fly. Kybernetik3, 288–295 (1967)

    Google Scholar 

  • Bishop, L.G., Keehn, D.G., McCann, G.D.: Studies of motion detection by interneurones of the optic lobes and brain of the flies,Calliphora phaenicia andMusca domestica. J. Neurophysiol.31, 509–525 (1969)

    Google Scholar 

  • Boschek, C.B.: On the fine structure of the peripheral retina and the lamina of the fly,Musca domestica. Z. Zellforsch.110, 336–349 (1971)

    Google Scholar 

  • Braitenberg, V.: Patterns of projection in the visual system of the fly. Exp. Brain Res.3, 271–298 (1967)

    Google Scholar 

  • Braitenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik7, 235–242 (1970)

    Google Scholar 

  • Braitenberg, V.: Periodic structures and structural gradients in the visual ganglia of the fly. In: Information processing in the visual system of arthropods (ed. R. Wehner), Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Braitenberg, V., Hauser-Holschuh, H.: Patterns of projection in the visual system of the fly II. Quantitative aspects of second order neurons in relation to models of movement perception. Exp. Brain Res.16, 184–209 (1972)

    Google Scholar 

  • Burrows, M., Siegler, V.S.: Transmission without spikes between locust interneurones and motoneurones. Nature (Lond.)262, 222–224 (1976)

    Google Scholar 

  • Campos-Ortega, J.A., Strausfeld, N.J.: The columnar organization of the second synaptic region of the visual system ofMusca domestica L.I. Receptor terminals in the medulla. Z. Zellforsch.124, 561–585 (1972a)

    Google Scholar 

  • Campos-Ortega, J.A., Strausfeld, N.J.: Columns and layers in the second synaptic region of the fly's visual system: the case for two superimposed neuronal architectures. In: Information processing in the visual system of arthropods (ed. R. Wehner). Berlin-Heidelberg-New York: Springer 1972b

    Google Scholar 

  • Chappell, R.L., Dowling, J.E.: Neural organization of the median ocellus of the dragonfly. I. Intracellular electrical activity. J. gen. Physiol.60, 121–147 (1972)

    Google Scholar 

  • Dahl, F.: Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 11. Teil. Zweiflügler oder Diptera. Jena: Fischer 1928

    Google Scholar 

  • Dill, J.G.: A computer-aided investigation of motion detection units in the fly. Ph.D. Thesis, California Institute of Technology, 1970

  • Dvorak, D.R., Bishop, L.G., Eckert, H.E.: Intracellular recording and staining of optomotor neurons in fly optic lobe. Society for Neuroscience Fourth Annual Meeting. St. Louis, Missouri, Society for Neuroscience 1974

    Google Scholar 

  • Dvorak, D.R., Bishop, L.G., Eckert, H.E.: Intracellular recording and staining of directionally selective motion detecting neurons in the fly optic lobe. Vis. Res.15, 451–453 (1975a)

    Google Scholar 

  • Dvorak, D.R., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. comp. Physiol.100, 5–23 (1975b)

    Google Scholar 

  • Eckert, H.: Identifizierte, bewegungssensitive Interneurone als neurophysiologische Korrelate für das Bewegungssehen der Insekten. Verh. dtsch. zool. Ges. Hamburg. Stuttgart-New York: Gustav Fischer 1976

    Google Scholar 

  • Eckert, H.: Identification of horizontal and vertical movement detection systems in insects. Society for Neuroscience Abstracts, 7th Annual Meeting. Society for Neuroscience, Anaheim 1977

    Google Scholar 

  • Eckert, H.: Response properties of dipteran giant visual interneurones. Nature271, 358–360 (1978a)

    Google Scholar 

  • Eckert, H.: Functional properties of an identified visual interneurone (H1-cells) in the context of behavioural responses. I. Dependance of the response on the velocity and contrast frequency of a moving pattern, in preparation (1978b)

  • Eckert, H.: Response properties of the horizontal cells (H-cells) in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae), in preparation (1978c)

  • Eckert, H., Bishop, L.G.: Response properties of identified visual interneurones in the third optic ganglion of dipterans (Phaenicia sericata) in the context of behavioural responses. Society for Neuroscience Abstracts, Toronto, Canada, Society for Neuroscience 1976

    Google Scholar 

  • Eckert, H., Boschek, C.B.: The use of horseradish peroxidase as a means of studying synaptic connections in the insect nervous system. In: Experimental entomology, neuroanatomical techniques (eds. T.A. Miller, N.J. Strausfeld). Berlin-Heidelberg-New York: Springer (submitted) 1978

    Google Scholar 

  • Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Les phénomènes de pseudopupille dans l'oeil composé deDrosophila. Kybernetik9, 159–182 (1971)

    Google Scholar 

  • Gemperlein, R.: Grundlagen zur genauen Beschreibung von Komplexaugen. Z. vergl. Physiol.65, 428–444 (1969)

    Google Scholar 

  • Götz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik4, 199–208 (1968)

    Google Scholar 

  • Götz, K.G.: Visual control or orientation patterns. In: Information processing in the visual systems of arthropods (ed. R. Wehner). Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Hausen, K.: Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula Plate von Dipteren, p. 65. Verh. dtsch. Zool. Ges. Hamburg-Stuttgart-New York: Gustav Fischer 1976a

    Google Scholar 

  • Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurones in the lobula plate of the blowflyCalliphora erythrocephala. Z. Naturforsch.31c, 629–633 (1976b)

    Google Scholar 

  • Hausen, K.: Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneurone im dritten optischen Neuropil der SchmeißfliegeCalliphora erythrocephala. Dissertation Tübingen (1976c)

  • Hengstenberg, R.: Spike responses of ‘non-spiking’ visual inter-neurone. Nature270, 338–340 (1977)

    Google Scholar 

  • Järvilehto, M., Zettler, F.: Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina. Z. vergl. Physiol.75, 422–440 (1971)

    Google Scholar 

  • Järvilehto, M., Zettler, F.: Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z. Zellforsch.136, 291–306 (1973)

    Google Scholar 

  • Kater, S.B., Nicholson, C.: Staining in Neurobiology. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge vonMusca. Exp. Brain Res.3, 248–270 (1967)

    Google Scholar 

  • Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the flyMusca. Z. Naturforsch.29c, 95–97 (1974)

    Google Scholar 

  • Larsen, J.R.: The use of Holmes' silver stain on insect nerve tissue. Stain Technol.35, 223–224 (1960)

    Google Scholar 

  • Laughlin, S.B.: Neural integration in the first optic neuropil of dragonflies I. Signal amplification in dark adapted second order neurons. J. comp. Physiol.84, 335–356 (1973)

    Google Scholar 

  • Lillie, R.D.: Histopathologic technic and practical histochemistry. New York-London: McGraw-Hill 1965

    Google Scholar 

  • McCann, G.D.: The fundamental mechanism of motion detection in the insect visual system. Kybernetik12, 64–73 (1973)

    Google Scholar 

  • McCann, G.D., Dill, J.C.: Fundamental properties of intensity, form and motion perception in the visual nervous systems ofCalliphora phaenicia andMusca domestica. J. gen. Physiol.53, 385–413 (1969)

    Google Scholar 

  • McCann, G.D., Foster, S.F.: Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik8, 193–203 (1971)

    Google Scholar 

  • Mountcastle, V.B.: Medical Physiology. Vol. II, p. 1070. Saint Louis: C.V. Mosby Company 1968

    Google Scholar 

  • Pearson, K.G., Fuortner, C.R.: Nonspiking interneurons in walking system of the cockroach. J. Neurophysiol.38, 33–52 (1975)

    Google Scholar 

  • Pierantoni, R.: An observation on the giant fiber posterior optic tract in the fly. Biocybernetics Congress (Leipzig 1973). In: Biokybernetik, Vol. V, pp. 157–163. Leipzig 1974

  • Pierantoni, R.: A look into the cock-pit of the fly. The architecture of the lobula plate. Cell Tiss. Res.171, 101–122 (1976)

    Google Scholar 

  • Preissler, M.: Struktur des inneren Chiasma im Sehsystem der FliegeMusca domestica. Diplomarbeit Tübingen 1974

  • Strausfeld, N.J.: Golgi studies on insects. Part II. The optic lobes of diptera. Phil. Trans. R. Soc. Lond. B258, 135–223 (1970)

    Google Scholar 

  • Strausfeld, N.J.: The organization of the insect visual system (Light microscopy) I. Projections and arrangements of neurons in the lamina ganglionaris of Diptera. Z. Zellforsch.121, 377–441 (1971)

    Google Scholar 

  • Strausfeld, N.J.: Atlas of an Insect Brain. Berlin-Heidelberg-New York: Springer 1976a

    Google Scholar 

  • Strausfeld, N.J.: Mosaic organizations, layers, and visual pathways in the insect brain. In: Neural principles in vision (eds. F. Zettler, R. Weiler). Berlin-Heidelberg-New York: Springer 1976b

    Google Scholar 

  • Strausfeld, N.J., Blest, A.D.: Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil. Trans. R. Soc. Lond. B258, 81–134 (1970)

    Google Scholar 

  • Strausfeld, N.J., Campos-Ortega, J.A.: Some interrelationships between the first and second synaptic regions of the fly's (Musca domestica L.) visual system. In: Information processing in the visual systems of arthropods (ed. R. Wehner). Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Strausfeld, N.J., Hausen, K.: The resolution of neuronal assemblies after cobalt injection into neuropil. Proc. R. Soc. Lond. B199, 463–476 (1977)

    Google Scholar 

  • Strausfeld, N.J., Obermayer, M.-L.: Transneuronal migration of cobalt and nickel in insect central nervous system: I. Diffusion rates and movement into functional classes of neurons. J. comp. Physiol.110, 1–12 (1976)

    Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organization of the intermediate retina of dipterans. J. Ultrastruct. Res.13, 1–33 (1965)

    Google Scholar 

  • Trujillo-Cenóz, O.: The structural organization of the compound eye in insects. In: Handbook of sensory physiology, Vol. VII/2 (ed. M.G.F. Fuortes), pp. 5–62. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Washizu, Y., Burkhardt, D., Streck, P.: Visual field of single retinula cells and interommatidial inclination in the compound eye of the blowflyCalliphora erythrocephala. Z. vergl. Physiol.48, 413–428 (1965)

    Google Scholar 

  • Zettler, F., Järvilehto, M.: Decrement free conduction of graded potentials along the axon of a monopolar neuron. Z. vergl. Physiol.75, 402–421 (1971)

    Google Scholar 

  • Zettler, F., Järvilehto, M.: Active and passive axonal propagation of non-spike signals in the retina ofCalliphora. J. comp. Physiol.85, 89–104 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank the “Deutsche Forschungsgemeinschaft” for support of these investigations through grant ec 56/1b. This research was furthermore supported by grants NSF BMS 74-21712 and NIH 1 ROL EY 01513-01. We are most grateful to Dr. N.J. Strausfeld for his help in identifying some of these cells. We wish to thank Prof. Hamdorf, Drs. Buchner, Franceschini, Hausen, Mr. D. Krieghoff, S. Razmjoo, D. Whittle for fruitful discussions and critical reading of the manuscript. We thank Mr. S. Soohoo for his aid in the computer analysis. We are indebted to Mr. D. Aranovich for designing some of the electronic control circuits, Mr. J. Wilson for building stimulus equipment, Mrs. I. Paas and Mr. J. Eppinger for help with the figures, and Mrs. Hundt and Mrs. B. Hadamczyk for the typing of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, H., Bishop, L.G. Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae). J. Comp. Physiol. 126, 57–86 (1978). https://doi.org/10.1007/BF01342651

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01342651

Keywords

Navigation