Skip to main content
Log in

Updated functional segregation of retinal ganglion cell projections in the tectum of a cyprinid fish—further elaboration based on microelectrode recordings

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Single-unit responses of retinal ganglion cells (GCs) were recorded extracellularly from their axonal terminals in the tectum opticum (TO) of the intact fish (goldfish, carp). The depths of retinal units consecutively recorded along the track of the microelectrode were measured. At the depth of around 50 μm, the responses of six types of direction-selective (DS) GCs were regularly recorded. Responses of two types of orientation-selective (OS) GCs and detectors of white and black spots occurred approximately 50 μm deeper. Responses of GCs with dark- and light-sustained activity were recorded deeper than all others, at about 200 μm. The receptive fields of consecutively recorded units overlap, so they analyze the same fragment of the visual scene, focused by eye optic on the photoreceptor raster. The responses of pairs of DS GCs (ON and OFF units that preferred same direction of stimulus movement) and OS GCs (detectors of vertical and horizontal lines) were often simultaneously recorded at one position of the microelectrode. (The paired recordings of certain units amounted about fourth part of all recordings.) This suggests that their axonal arborizations are located close to each other in the tectal retinorecipient layer. Electrophysiological method, thus, allows to indirectly clarify and make precise the morphology of the retino-tectal connections and to establish a morpho-physiological correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bowmaker JK (1999) The ecology of visual pigments. In: Takeuchi I, Bock G, Goode JA (eds) Novartis Foundation Symposium 224—rhodopsins and phototransduction. John Wiley & Sons, Chichester, pp 21–31

    Google Scholar 

  • Burrill JD, Easter SS Jr (1994) Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J Comp Neurol 346:583–600

    Article  CAS  PubMed  Google Scholar 

  • Cronly-Dillon JR (1964) Units sensitive to direction of movement in goldfish tectum. Nature 203:214–215

    Article  CAS  PubMed  Google Scholar 

  • Damjanović I (2015) Direction selective units in goldfish retina and tectum opticum—review and new aspects. J Integr Neurosci 14:535–556

    Article  Google Scholar 

  • Damjanović I, Maximova EM, Maximov VV (2009a) Receptive field sizes of direction-selective units in the fish tectum. J Integr Neurosci 8:77–93

    Article  PubMed  Google Scholar 

  • Damjanović I, Maximova EM, Maximov VV (2009b) On the organization of receptive fields of orientation-selective units recorded in the fish tectum. J Integr Neurosci 8:323–344

    Article  PubMed  Google Scholar 

  • Damjanović I, Maximova EM, Aliper AT, Maximov PV, Maximov VV (2015) Opposing motion inhibits responses of direction-selective ganglion cells in the fish retina. J Integr Neurosci 14:53–72

    Article  PubMed  Google Scholar 

  • Gabriel JP, Triverdi CA, Maurer CM, Ryu C, Bollman JH (2012) Layer-specific targeting of direction-selective neurons in the zebrafish tectum opticum. Neuron 76:1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Gesteland RC, Howland B, Lettvin JY, Pitts WH (1959) Comments on microelectrodes. P IRE 47:1856–1862

    Article  Google Scholar 

  • Grama A, Engert F (2012) Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition. Front Neural Circuit 6:59

    Article  Google Scholar 

  • Hong YK, Kim IJ, Sanes JR (2011) Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J Comp Neurol 519:1691–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter PR, Lowe AS, Thompson I, Meyer MP (2013) Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J Neurosci 33:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson M, Gaze RM (1964) Types of visual response from single units in the optic tectum and optic nerve of the goldfish. Q J Exp Physiol 49:199–209

    Article  CAS  PubMed  Google Scholar 

  • Kassing V, Engelman G, Kurtz R (2013) Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS One 8:1–10

    Article  CAS  Google Scholar 

  • Kinoshita M, Ito E (2006) Roles of periventricular neurons in retinotectal transmission in the optic tectum. Prog Neurobiol 79:112–121

    Article  PubMed  Google Scholar 

  • Lamb TD, Collin SP, Pugh EN Jr (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What frog’s eye tells to the frog’s brain. P Ire 47:1940–1951

    Article  Google Scholar 

  • Liège B, Galand G (1971) Types of single-unit visual responses in the trout’s optic tectum. In: Gudikov A (ed) Visual information processing and control of motor activity. Publishing House of the Bulgarian Academy of Sciences, Sofia, pp 63–65

    Google Scholar 

  • Marc RE, Cameron D (2002) A molecular phenotype atlas of the zebrafish retina. J Neurocytol 30:593–654

    Article  Google Scholar 

  • Marc RE, Jones BW (2002) Molecular phenotyping of retinal ganglion cells. J Neurosci 22:413–427

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Sperling HG (1976) Chromatic organization of the goldfish cone mosaic. Vis Res 16:1211–1224

    Article  CAS  PubMed  Google Scholar 

  • Masland RH (2012) The neuronal organization of the retina. Neuron 76:266–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthiessen L (1880) Untersuchungen uber den aplanatismus und die periscopie der krys-tallinsen des fischauges. Pfluger Arch Ges Physiol 21:287–307

    Article  Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog. J Gen Physiol 43:129–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Maximov VV (2010) A model of receptive field of orientation-selective ganglion cells of the fish retina. Sensornye Sistemy 24:110–124 (in Russian)

    Google Scholar 

  • Maximov PV, Maximov VV (2010) A hardware-software complex for electrophysiological studies of the fish visual system. In: International Symposium “Ivan Djaja’s (Jaen Giaja) Belgrade School of Physiology”. Book of Abstracts 9–15 September, Belgrade, Serbia 151

  • Maximov VV, Maximova EM, Maximov PV (2005a) Direction selectivity in the goldfish tectum revisited. Ann N Y Acad Sci 1048:198–205

    Article  PubMed  Google Scholar 

  • Maximov VV, Maximova EM, Maximov PV (2005b) Classification of direction-selective units recorded in the goldfish tectum. Sensornye Sistemy 19:322–335 (in Russian)

    Google Scholar 

  • Maximov VV, Maximova EM, Maximov PV (2009) Classification of orientation-selective units recorded in the gold fish tectum. Sensornye Sistemy 23:13–23 (in Russian)

    Google Scholar 

  • Maximov VV, Maximova EM, Damjanović I, Maximov PV (2013) Detection and resolution of drifting gratings by motion detectors in the fish retina. J Integr Neurosci 12:117–143

    Article  PubMed  Google Scholar 

  • Maximova EM, Maximov VV (1981) Detectors of the oriented lines in the visual system of the fish Carassius carassius. J Evol Biochem Phys 17:519–525 (in Russian)

    Google Scholar 

  • Maximova EM, Orlov OY, Dimentman AM (1971) Investigation of visual system of some marine fishes. Voprocy Ichtiologii 11:893–899 (in Russian)

    Google Scholar 

  • Maximova EM, Dimentman AM, Maximov VV, Nikolayev PP, Orlov OY (1975) The physiological mechanisms of colour constancy. Neirofiziologiya 7:21–26 (in Russian)

    Google Scholar 

  • Maximova EM, Levichkina EV, Utina IA (2006) Morphology of putative direction-selective ganglion cells traced with Dii in the fish retina. Sensornye Sistemy 20:279–287 (in Russian)

    Google Scholar 

  • Maximova EM, Pushchin II, Maximov PV, Maximov VV (2012) Presynaptic and postsynaptic single-unit responses in the goldfish tectum as revealed by a reversible synaptic transmission blocker. J Integr Neurosci 11:183–191

    Article  PubMed  Google Scholar 

  • Montgomery SH, Mundy NI, Burton RA (2017) Brain evolution and development: adaptation, allometry and constraint. Proc R Soc Lond B 283:1–9

    Google Scholar 

  • Nevin LM, Robles E, Baier H, Scot EK (2010) Focusing on optic tectum circuitry through the lens of genetics. BMC Biol 8:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolaou N, Lowe AS, Walker AS, Abbas F, Hunter PR, Thompson ID, Meyer MP (2012) Parametric functional maps of visual inputs to the tectum. Neuron 76:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northmore DPM (2011) The optic tectum. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Elsevier, Publisher, pp 131–142

    Chapter  Google Scholar 

  • Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A Discov Mol Cell Evol Biol 287A:1001–1012

    Article  CAS  Google Scholar 

  • Preuss SJ, Triverdi CA, Berg-Maurer CM, Ryu S, Bollman JH (2014) Classification of object size in retinotectal microcircuits. Curr Biol 24:2376–2385

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1892) Le retine des vertebres. Cellule 9:119–257

    Google Scholar 

  • Robles E, Smith SJ, Baier H (2011) Characterization of genetically targeted neuron types in the zebrafish optic tectum. Front Neural Circuit 5:1, 1–14

    Article  Google Scholar 

  • Robles E, Filosa A, Baier H (2013) Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J Neurosci 33:5027–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robles E, Laurell E, Baier H (2014) The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr Biol 24:2085–2096

    Article  CAS  PubMed  Google Scholar 

  • Roska B, Meister M (2014) The retina dissects the visual scene into distinct features. In: Werner JH, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge, MA, pp 163–183

    Google Scholar 

  • Schwassmann HO, Kruger L (1965) Organization of the visual projection upon the optic tectum of some freshwater fish. J Comp Neurol 124:113–126

    Article  Google Scholar 

  • Springer AD, Easter SS, Agranoff BW (1977) The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res 128:393–404

    Article  CAS  PubMed  Google Scholar 

  • Stell WK, Kock JH (1984) Structure, development and visual acuity in the goldfish retina. In: Hilfer SR et al (eds) Molecular and cellular basis of visual acuity. Springer-Verlag New York Inc., New York, pp 79–105

    Chapter  Google Scholar 

  • Tsvilling V, Donchin O, Shamir M, Segev R (2012) Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells. Eur J Neurosci 35:436–444

    Article  PubMed  Google Scholar 

  • van Wyk M, Taylor WR, Vaney DI (2006) Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina. J Neurosci 26:13250–13263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanegas H, Ito H (1983) Morphological aspects of the teleostean visual system: a review. Brain Res Rev 6:117–137

    Article  Google Scholar 

  • Wagner HJ, Kröger RH (2005) Adaptive plasticity during the development of colour vision. Prog Retin Eye Res 24:521–536

    Article  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills

    Google Scholar 

  • Wartzok D, Marks WB (1973) Directionally selective visual units recorded in optic tectum of the goldfish. J Neurophysiol 36:588–604

    Article  CAS  PubMed  Google Scholar 

  • Zenkin GM, Pigarev IN (1969) Detector properties of the ganglion cells of the pike retina. Biofizika 14:763–772 (in Russian)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Luka Gačić who provided improvements to our English grammar.

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 16-04-00029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Gačić.

Ethics declarations

The experimental procedures were approved by the local ethical committee of the Institute for Information Transmission Problems of the Russian Academy of Sciences (Protocol No. 1 of April 24 2018).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliper, A.T., Zaichikova, A.A., Damjanović, I. et al. Updated functional segregation of retinal ganglion cell projections in the tectum of a cyprinid fish—further elaboration based on microelectrode recordings. Fish Physiol Biochem 45, 773–792 (2019). https://doi.org/10.1007/s10695-018-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0603-0

Keywords

Navigation